THE 2(N)-ELEMENT NUMBER NEURAL-NETWORK MODEL - RECOGNITION OF THE MULTISTATE PATTERNS

被引:4
|
作者
SHUAI, JW
CHEN, ZX
LIU, RT
WU, BX
机构
[1] Physics Department, Xiamen University, Xiamen
关键词
D O I
10.1080/09500349514551031
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, a 2(n)-element number discrete neural network is suggested. The storage capacity ratios of the model for the various value n are the same, and the storage capacities of the 2(n)-element number network decrease with the increase of n. The present model can be applied to recognize the 4, 16 or 256 level grey or colour patterns.
引用
收藏
页码:1179 / 1188
页数:10
相关论文
共 50 条
  • [31] A NEURAL-NETWORK MODEL OF PANIC DISORDER
    OWNBY, RL
    CARMIN, CN
    BIOLOGICAL PSYCHIATRY, 1995, 37 (09) : 616 - 616
  • [32] AN EXTENDED BAM NEURAL-NETWORK MODEL
    MIAO, ZJ
    YUAN, BZ
    IJCNN '93-NAGOYA : PROCEEDINGS OF 1993 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 1993, : 2682 - 2685
  • [33] THE NUMBER OF METASTABLE STATES IN THE PROJECTION RULE NEURAL-NETWORK
    KUHLMANN, P
    ANLAUF, JK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (17): : 5857 - 5870
  • [34] A NEURAL-NETWORK MODEL OF PHANTOM LIMBS
    SPITZER, M
    BOHLER, P
    WEISBROD, M
    KISCHKA, U
    BIOLOGICAL CYBERNETICS, 1995, 72 (03) : 197 - 206
  • [35] NEURAL-NETWORK REPRESENTATION OF FINITE-ELEMENT METHOD
    TAKEUCHI, J
    KOSUGI, Y
    NEURAL NETWORKS, 1994, 7 (02) : 389 - 395
  • [36] SYNCHRONIZATION IN A NEURAL-NETWORK OF PHASE OSCILLATORS WITH THE CENTRAL ELEMENT
    KAZANOVICH, YB
    BORISYUK, RM
    BIOLOGICAL CYBERNETICS, 1994, 71 (02) : 177 - 185
  • [37] DESIGN OF A NEURAL-NETWORK FOR RECOGNITION AND CLASSIFICATION OF COMPUTER VIRUSES
    DOUMAS, A
    MAVROUDAKIS, K
    GRITZALIS, D
    KATSIKAS, S
    COMPUTERS & SECURITY, 1995, 14 (05) : 435 - 448
  • [38] VOICE RECOGNITION BY NEURAL-NETWORK UNDER TRACTOR NOISE
    SATO, K
    HOKI, M
    SALOKHE, VM
    TRANSACTIONS OF THE ASAE, 1993, 36 (04): : 1223 - 1227
  • [39] APPLICATION OF THE ARTIFICIAL NEURAL-NETWORK APPROACH TO THE RECOGNITION OF SPECIFIC PATTERNS IN AUGER ELECTRON-SPECTROSCOPY
    SOUZA, MN
    GATTS, C
    FIGUEIRA, MA
    SURFACE AND INTERFACE ANALYSIS, 1993, 20 (13) : 1047 - 1050
  • [40] OBJECT RECOGNITION IN IMAGE SEQUENCES WITH HOPFIELD NEURAL-NETWORK
    NISHIMURA, K
    IZUMI, M
    FUKUNAGA, K
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1995, E78D (08) : 1058 - 1064