On the parameter optimization of Support Vector Machines for binary classification

被引:55
|
作者
Gaspar, Paulo [1 ]
Carbonell, Jaime [2 ]
Luis Oliveira, Jose [1 ]
机构
[1] Univ Aveiro, DETI IEETA, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[2] Carnegie Mellon Univ, Language Technol Inst, Pittsburgh, PA 15213 USA
关键词
D O I
10.2390/biecoll-jib-2012-201
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Classifying biological data is a common task in the biomedical context. Predicting the class of new, unknown information allows researchers to gain insight and make decisions based on the available data. Also, using classification methods often implies choosing the best parameters to obtain optimal class separation, and the number of parameters might be large in biological datasets. Support Vector Machines provide a well-established and powerful classification method to analyse data and find the minimal-risk separation between different classes. Finding that separation strongly depends on the available feature set and the tuning of hyper-parameters. Techniques for feature selection and SVM parameters optimization are known to improve classification accuracy, and its literature is extensive. In this paper we review the strategies that are used to improve the classification performance of SVMs and perform our own experimentation to study the influence of features and hyper-parameters in the optimization process, using several known kernels.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Self -Adaptive Parameter Optimization Approach for Least Squares Support Vector Machines
    Li Chun-xiang
    Zhang Wei-min
    Zhong Bi-liang
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3516 - 3519
  • [42] Gaussian Kernel Parameter Optimization in One-Class Support Vector Machines
    Anaissi, Ali
    Braytee, Ali
    Naji, Mohamad
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [43] Particle swarm optimization for parameter determination and feature selection of support vector machines
    Lin, Shih-Wei
    Ying, Kuo-Ching
    Chen, Shih-Chieh
    Lee, Zne-Jung
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (04) : 1817 - 1824
  • [44] An ICDF-Based Fast Parameter Optimization Approach for Support Vector Machines
    Wang J.-P.
    Hu Y.-M.
    Luo J.-X.
    Luo, Jia-Xiang (luojx@scut.edu.cn), 1600, South China University of Technology (45): : 135 - 142
  • [45] Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Cat Swarm Optimization
    Lin, Kuan-Cheng
    Huang, Yi-Hung
    Hung, Jason C.
    Lin, Yung-Tso
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2015,
  • [46] Three-parameter sequential minimal optimization for support vector classification
    Lin, Yih-Lon
    Jeng, Jyh-Homg
    Hsieh, Jer-Guang
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 3515 - +
  • [47] ON REGULARISATION PARAMETER TRANSFORMATION OF SUPPORT VECTOR MACHINES
    Chew, Hong-Gunn
    Lim, Cheng-Chew
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2009, 5 (02) : 403 - 415
  • [48] Efficient parameter selection for support vector machines
    Huang, Hsin-Hsiung
    Wang, Zijing
    Chung, Wingyan
    ENTERPRISE INFORMATION SYSTEMS, 2019, 13 (06) : 916 - 932
  • [49] Model Parameter Selection of Support Vector Machines
    Zhao, Mingyuan
    Tang, Ke
    Zhou, Mingtian
    Zhang, Fengli
    Zeng, Ling
    2008 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 128 - +
  • [50] Efficient Parameter Selection of Support Vector Machines
    Ismael, K.
    Salleh, S. H.
    Najeb, J. M.
    Bakhteri, R. B. Jahangir
    4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2, 2008, 21 (1-2): : 183 - +