SOLUTION OF LINEAR EQUATIONS WITH HANKEL AND TOEPLITZ MATRICES

被引:26
|
作者
RISSANEN, J [1 ]
机构
[1] LINKOPING UNIV,DEPT ELECT ENGN,S-581 83 LINKOPING,SWEDEN
关键词
D O I
10.1007/BF01436919
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:361 / 366
页数:6
相关论文
共 50 条
  • [31] Commutation relations for Toeplitz and Hankel matrices
    Gu, C
    Patton, L
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) : 728 - 746
  • [32] BALANCED RANDOM TOEPLITZ AND HANKEL MATRICES
    Basak, Anirban
    Bose, Arup
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 134 - 148
  • [33] Product of Rectangular Toeplitz (Hankel) Matrices
    Bensliman, S.
    Yagoub, A.
    Toumache, K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (11) : 2510 - 2522
  • [34] On conditions for permutability of Toeplitz and Hankel matrices
    Ikramov, Kh. D.
    Chugunov, V. N.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (03) : 354 - 357
  • [35] Some remarks on Toeplitz multipliers and Hankel matrices
    Pelczynski, Aleksander
    Sukochev, Fyodor
    STUDIA MATHEMATICA, 2006, 175 (02) : 175 - 204
  • [36] On the Norms of Toeplitz and Hankel Matrices with Pell Numbers
    Karpuz, Eylem G.
    Ates, Firat
    Gungor, A. Dilek
    Cangul, I. Naci
    Cevik, A. Sinan
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1117 - +
  • [37] Bounded and compact Toeplitz plus Hankel matrices
    Ehrhardt, Torsten
    Hagger, Raffael
    Virtanen, Jani A.
    STUDIA MATHEMATICA, 2021, 260 (01) : 103 - 120
  • [38] TENSOR BASE OF HANKEL (OR TOEPLITZ) MATRICES - APPLICATIONS
    LAFON, JC
    NUMERISCHE MATHEMATIK, 1975, 23 (04) : 349 - 361
  • [39] Efficient quantum circuits for Toeplitz and Hankel matrices
    Mahasinghe, A.
    Wang, J. B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (27)
  • [40] ON THE INVERSES OF TOEPLITZ-PLUS-HANKEL MATRICES
    HEINIG, G
    ROST, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 106 : 39 - 52