Some observations on multigrid convergence for convection-diffusion equations

被引:1
|
作者
Ramage, Alison [1 ]
Elman, Howard C. [2 ]
机构
[1] Univ Strathclyde, Dept Math, 26 Richmond St, Glasgow G1 1XH, Lanark, Scotland
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00791-006-0050-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the convergence behaviour of multigrid methods for two-dimensional discrete convection-diffusion equations. In Elman and Ramage (BIT 46: 283-299, 2006), we showed that for constant coefficient problems with grid-aligned flow and semiperiodic boundary conditions, the two-grid iteration matrix can be reduced via a set of orthogonal transformations to a matrix containing individual 4 x 4 blocks, enabling a trivial computation of the norm of the iteration matrix. Here we use a similar Fourier analysis technique to investigate the individual contributions from the smoothing and approximation property matrices which form the basis of many standard multigrid analyses. As well as the theoretical results in the semiperiodic case, we present numerical results for a corresponding Dirichlet problem and examine the correlation between the two cases.
引用
收藏
页码:43 / 56
页数:14
相关论文
共 50 条
  • [31] SOME MONOTONIC DIFFERENCE-SCHEMES FOR CONVECTION-DIFFUSION EQUATIONS
    LU, JF
    CHINESE PHYSICS, 1992, 12 (02): : 503 - 510
  • [32] Downwind numbering: Robust multigrid for convection-diffusion problems
    Bey, J
    Wittum, G
    APPLIED NUMERICAL MATHEMATICS, 1997, 23 (01) : 177 - 192
  • [33] Lattice Boltzmann simulation of some nonlinear convection-diffusion equations
    Shi, Baochang
    Guo, Zhaoli
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (12) : 3443 - 3452
  • [34] Convergence Analysis of a Coupled Method for Time-Dependent Convection-Diffusion Equations
    Riviere, Beatrice
    Yang, Xin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (01) : 133 - 157
  • [35] Optimizing a multigrid Runge-Kutta smoother for variable-coefficient convection-diffusion equations
    Bertaccini, Daniele
    DonateIli, Marco
    Durastante, Fabio
    Serra-Capizzano, Stefano
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 533 : 507 - 535
  • [36] Metastability for nonlinear convection-diffusion equations
    Folino, Raffaele
    Lattanzio, Corrado
    Mascia, Corrado
    Strani, Marta
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (04):
  • [37] An Explicit Method for Convection-Diffusion Equations
    Ruas, Vitoriano
    Brasil, Antonio, Jr.
    Trales, Paulo
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2009, 26 (01) : 65 - 91
  • [38] Particle approximation of convection-diffusion equations
    Lécot, C
    Schmid, WC
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 55 (1-3) : 123 - 130
  • [39] An explicit method for convection-diffusion equations
    Vitoriano Ruas
    Antonio Brasil
    Paulo Trales
    Japan Journal of Industrial and Applied Mathematics, 2009, 26
  • [40] A parallel multigrid solver for 3D convection and convection-diffusion problems
    Llorente, IM
    Prieto-Matías, M
    Diskin, B
    PARALLEL COMPUTING, 2001, 27 (13) : 1715 - 1741