Bayesian Hierarchical Model for Estimating Gene Expression Intensity Using Multiple Scanned Microarrays

被引:2
|
作者
Gupta, Rashi [1 ,2 ]
Arjas, Elja [1 ,3 ]
Kulathinal, Sangita [1 ]
Thomas, Andrew [1 ]
Auvinen, Petri [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, Helsinki 00014, Finland
[2] Univ Helsinki, Inst Biotechnol, Helsinki 00014, Finland
[3] Nat Publ Hlth Inst KTL, Helsinki 00300, Finland
基金
芬兰科学院;
关键词
D O I
10.1155/2008/231950
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a method for improving the quality of signal from DNA microarrays by using several scans at varying scanner sensitivities. A Bayesian latent intensity model is introduced for the analysis of such data. The method improves the accuracy at which expressions can be measured in all ranges and extends the dynamic range ofmeasured gene expression at the high end. Ourmethod is generic and can be applied to data from any organism, for imaging with any scanner that allows varying the laser power, and for extraction with any image analysis software. Results from a self-self hybridization data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan.Copyright (C) 2008 Rashi Gupta et al.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Analysis of gene expression data of the NCI 60 cancer cell lines using Bayesian hierarchical effects model
    Lee, JK
    Scherf, U
    Smith, LH
    Tanabe, L
    Weinstein, JN
    MICROARRAYS: OPTICAL TECHNOLOGIES AND INFORMATICS, 2001, 4266 : 228 - 235
  • [32] A GENERAL BAYESIAN HIERARCHICAL MODEL FOR ESTIMATING SURVIVAL OF NESTS AND YOUNG
    Schmidt, Joshua H.
    Walker, Johann A.
    Lindberg, Mark S.
    Johnson, Devin S.
    Stephens, Scott E.
    AUK, 2010, 127 (02): : 379 - 386
  • [33] Bayesian hierarchical models for serial analysis of gene expression
    Nam, Seungyoon
    Lee, Seungmook
    Lee, Sanghyuk
    Shin, Seokmin
    Park, Taesung
    DATA MINING AND BIOINFORMATICS, 2006, 4316 : 29 - +
  • [34] Monitoring gene expression using DNA microarrays
    Harrington, CA
    Rosenow, C
    Retief, J
    CURRENT OPINION IN MICROBIOLOGY, 2000, 3 (03) : 285 - 291
  • [35] Gene expression patterns in Dictyostelium using microarrays
    Shaulsky, G
    Loomis, WF
    PROTIST, 2002, 153 (02) : 93 - 98
  • [36] Large-scale expression analysis of multiple sclerosis lesions using gene microarrays
    Lock, C
    Steinman, L
    Oksenberg, J
    Raine, C
    Heller, R
    NEUROLOGY, 1999, 52 (06) : A439 - A439
  • [37] Gene expression profiling using cDNA microarrays
    Joussen, AM
    Huang, S
    OPHTHALMOLOGE, 2001, 98 (06): : 568 - 573
  • [38] A Semiparametric Bayesian Approach for Estimating the Gene Expression Distribution
    Zou, Fei
    Huang, Hanwen
    Ibrahim, Joseph G.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2010, 20 (02) : 267 - 280
  • [39] Estimation of Isoform Expression using Hierarchical Bayesian Model by RNA-seq
    Wang, Zengmiao
    Wang, Jun
    Deng, Minghua
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 8554 - 8558
  • [40] Estimating Heritability of Gene Expression Using Parent-Offspring Regression with 2-Channel Microarrays
    Albouyeh, Rokneddin
    Ritland, Kermit
    JOURNAL OF HEREDITY, 2009, 100 (01) : 114 - 118