This paper considers fluid queuing models of Markov-modulated traffic that, due to large differences in the time-scales of events, possess structural characteristics that yield a nearly completely decomposable (NCD) state-space, Extension of domain decomposition and aggregation techniques that apply to approximating the eigensystem of Markov chains permits the approximate subdivision of the full system to a number of small, independent subsystems (decomposition phase), plus an 'aggregative' system featuring a state-space that distinguishes only one index per subsystem (aggregation phase). Perturbation analysis reveals that the error incurred by the approximation is of an order of magnitude equal to the weak coupling of the NCD Markov chain. The study in this paper is then extended to the structure of NCD fluid models describing source superposition (multiplexing). It is shown that efficient spectral factorization techniques that arise from the Kroneeker sum form of the global matrices can Ire applied through and combined with the decomposition and aggregation procedures. All structural characteristics and system parameters are expressible in terms of the individual sources multiplexed together rendering the construction of the global system unnecessary. Finally, besides providing efficient computational algorithms, the work in this paper can be recast as a conceptual framework for the better understanding of queueing systems under the presence of events happening in widely differing time-scales.
机构:
Univ New S Wales, Australian Sch Business, Sydney, NSW, AustraliaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Zhu, Jinxia
Yang, Hailiang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
机构:
Department of Mathematics, Technische Universität München, Parkring 11, Garching-HochbrückDepartment of Mathematics, Technische Universität München, Parkring 11, Garching-Hochbrück
Neykova D.
Escobar M.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Ryerson University, 350 Victoria St., TorontoDepartment of Mathematics, Technische Universität München, Parkring 11, Garching-Hochbrück
Escobar M.
Zagst R.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Technische Universität München, Parkring 11, Garching-HochbrückDepartment of Mathematics, Technische Universität München, Parkring 11, Garching-Hochbrück
机构:
Vienna Univ Technol, Inst Stat & Math Methods Econ, Wiedner Hauptstr 8-10, A-1040 Vienna, AustriaVienna Univ Technol, Inst Stat & Math Methods Econ, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
Saffer, Zsolt
Telek, Miklos
论文数: 0引用数: 0
h-index: 0
机构:
MTA BME Informat Syst Res Grp, Magyar Tudosok Korutja 2, H-1117 Budapest, HungaryVienna Univ Technol, Inst Stat & Math Methods Econ, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
Telek, Miklos
Horvath, Gabor
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Dept Networked Syst & Serv, Magyar Tudosok Korutja 2, H-1117 Budapest, HungaryVienna Univ Technol, Inst Stat & Math Methods Econ, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria