MARKOV-MODULATED TRAFFIC WITH NEARLY COMPLETE DECOMPOSABILITY CHARACTERISTICS AND ASSOCIATED FLUID QUEUING MODELS

被引:11
|
作者
KONTOVASILIS, KP
MITROU, NM
机构
关键词
PERTURBATION; MULTIPLEXING; SPECTRAL FACTORIZATION; SOURCE SUPERPOSITION;
D O I
10.2307/1427937
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers fluid queuing models of Markov-modulated traffic that, due to large differences in the time-scales of events, possess structural characteristics that yield a nearly completely decomposable (NCD) state-space, Extension of domain decomposition and aggregation techniques that apply to approximating the eigensystem of Markov chains permits the approximate subdivision of the full system to a number of small, independent subsystems (decomposition phase), plus an 'aggregative' system featuring a state-space that distinguishes only one index per subsystem (aggregation phase). Perturbation analysis reveals that the error incurred by the approximation is of an order of magnitude equal to the weak coupling of the NCD Markov chain. The study in this paper is then extended to the structure of NCD fluid models describing source superposition (multiplexing). It is shown that efficient spectral factorization techniques that arise from the Kroneeker sum form of the global matrices can Ire applied through and combined with the decomposition and aggregation procedures. All structural characteristics and system parameters are expressible in terms of the individual sources multiplexed together rendering the construction of the global system unnecessary. Finally, besides providing efficient computational algorithms, the work in this paper can be recast as a conceptual framework for the better understanding of queueing systems under the presence of events happening in widely differing time-scales.
引用
收藏
页码:1144 / 1185
页数:42
相关论文
共 50 条