FOURIER-BESSEL HARMONIC EXPANSIONS FOR TOMOGRAPHY OF PARTIALLY OPAQUE OBJECTS

被引:7
|
作者
WATT, DW
机构
[1] Department of Mechanical Engineering, University of New Hampshire, Durham, NH
来源
APPLIED OPTICS | 1995年 / 34卷 / 32期
关键词
D O I
10.1364/AO.34.007468
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Tomographic reconstruction from a limited amount of projection data of fields with embedded opaque objects can result in streaks and other artifacts in the reconstructed image. These artifacts result from the use of local-basis-function expansions to represent the image. I demonstrate that reconstructions by circular-harmonic expansions are largely free of these artifacts. A Fourier-Bessel expansion on a circular domain is used as the reconstruction basis; this expansion is used to compare circular-harmonic reconstructions with square-pixel reconstructions to determine qualitative differences between the local bases and the circular harmonics. Computational issues are also discussed. (C) 1995 Optical Society of America
引用
收藏
页码:7468 / 7473
页数:6
相关论文
共 50 条
  • [31] Study on the property of the second harmonic in the nearfield of a Bessel ultrasonic field based on the Fourier-Bessel series
    Du Hong-Wei
    Peng Hu
    Jiang Zhao-Hui
    Feng Huan-Qing
    ACTA PHYSICA SINICA, 2007, 56 (11) : 6496 - 6502
  • [32] NUMERICAL EVALUATION OF FOURIER AND FOURIER-BESSEL TRANSFORMS
    MANDEL, F
    BEARMAN, RJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 1971, 7 (03) : 637 - &
  • [33] EQUICONVERGENCE THEOREMS FOR FOURIER-BESSEL EXPANSIONS WITH APPLICATIONS TO THE HARMONIC-ANALYSIS OF RADIAL FUNCTIONS IN EUCLIDEAN AND NON-EUCLIDEAN SPACES
    COLZANI, L
    CRESPI, A
    TRAVAGLINI, G
    VIGNATI, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) : 43 - 55
  • [34] Lp-Boundedness of Stein's Square Functions Associated with Fourier-Bessel Expansions
    Almeida, Victor
    Betancor, Jorge J.
    Dalmasso, Estefania
    Rodriguez-Mesa, Lourdes
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [35] On some developments into Fourier-Bessel series
    Kosljakov, NS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1937, 14 : 173 - 176
  • [36] Fourier-Bessel rotational invariant eigenimages
    Zhao, Zhizhen
    Singer, Amit
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2013, 30 (05) : 871 - 877
  • [37] Weighted transplantation for Fourier-Bessel series
    Ciaurri, Oscar
    Stempak, Krzysztof
    JOURNAL D ANALYSE MATHEMATIQUE, 2006, 100 (1): : 133 - 156
  • [38] On the multipliers of the mixed Fourier-Bessel transform
    Kipriyanov, IA
    Lyakhov, LN
    DOKLADY AKADEMII NAUK, 1997, 354 (04) : 449 - 451
  • [39] Canonical Fourier-Bessel transform and their applications
    Ghazouani, Sami
    Sahbani, Jihed
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (01)
  • [40] MEAN CONVERGENCE OF FOURIER-BESSEL SERIES
    HOCHSTADT, H
    SIAM REVIEW, 1967, 9 (02) : 211 - +