FOURIER-BESSEL HARMONIC EXPANSIONS FOR TOMOGRAPHY OF PARTIALLY OPAQUE OBJECTS

被引:7
|
作者
WATT, DW
机构
[1] Department of Mechanical Engineering, University of New Hampshire, Durham, NH
来源
APPLIED OPTICS | 1995年 / 34卷 / 32期
关键词
D O I
10.1364/AO.34.007468
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Tomographic reconstruction from a limited amount of projection data of fields with embedded opaque objects can result in streaks and other artifacts in the reconstructed image. These artifacts result from the use of local-basis-function expansions to represent the image. I demonstrate that reconstructions by circular-harmonic expansions are largely free of these artifacts. A Fourier-Bessel expansion on a circular domain is used as the reconstruction basis; this expansion is used to compare circular-harmonic reconstructions with square-pixel reconstructions to determine qualitative differences between the local bases and the circular harmonics. Computational issues are also discussed. (C) 1995 Optical Society of America
引用
收藏
页码:7468 / 7473
页数:6
相关论文
共 50 条
  • [1] Conjugacy for Fourier-Bessel expansions
    Ciaurri, Oscar
    Stempak, Krzysztof
    STUDIA MATHEMATICA, 2006, 176 (03) : 215 - 247
  • [2] CONVERGENCE OF FOURIER-BESSEL EXPANSIONS
    STOREY, SH
    COMPUTER JOURNAL, 1968, 10 (04): : 402 - &
  • [3] On Basic Fourier-Bessel Expansions
    Cardoso, Jose Luis
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [4] HARDY SPACES FOR FOURIER-BESSEL EXPANSIONS
    Dziubanski, Jacek
    Preisner, Marcin
    Roncal, Luz
    Stinga, Pablo Raul
    JOURNAL D ANALYSE MATHEMATIQUE, 2016, 128 : 261 - 287
  • [5] Hardy spaces for Fourier-Bessel expansions
    Jacek Dziubański
    Marcin Preisner
    Luz Roncal
    Pablo Raúl Stinga
    Journal d'Analyse Mathématique, 2016, 128 : 261 - 287
  • [6] Fourier-Bessel expansions with general boundary conditions
    Pinsky, MA
    ANALYSIS OF DIVERGENCE: CONTROL AND MANAGEMENT OF DIVERGENT PROCESSES, 1999, : 107 - 115
  • [7] Transplantation and multiplier theorems for Fourier-Bessel expansions
    Ciaurri, Oscar
    Stempak, Krzysztof
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (10) : 4441 - 4465
  • [8] Higher Order Riesz Transforms for Fourier-Bessel Expansions
    Ciaurri, Oscar
    Roncal, Luz
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (04) : 770 - 789
  • [9] The Bochner-Riesz means for Fourier-Bessel expansions
    Ciaurri, O
    Roncal, L
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 228 (01) : 89 - 113
  • [10] EVALUATION OF FOLDING INTEGRALS USING FOURIER-BESSEL EXPANSIONS
    HNIZDO, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (21): : 7139 - 7145