LAW OF PROLIFERATION OF PERIODIC-ORBITS IN PSEUDOINTEGRABLE BILLIARDS

被引:3
|
作者
PARAB, HD
JAIN, SR
机构
[1] Theoretical Physics Division, Bhabha Atomic Research Center
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 02期
关键词
D O I
10.1103/PhysRevE.47.R776
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We prove that the periodic-orbit counting function, a measure of the rate of proliferation of periodic orbits, for a barrier billiard and the pi/3-rhombus billiard is of the form ax2 + bx + c, where x is the length (equivalently, period) up to which periodic orbits are counted and a,b,c are system-specific constants. The generality of our arguments strongly suggests that the law of proliferation given here is a representation of general truth about two-dimensional plane-polygonal billiards.
引用
收藏
页码:R776 / R779
页数:4
相关论文
共 50 条
  • [21] UNSTABLE PERIODIC-ORBITS AND PREDICTION
    PAWELZIK, K
    SCHUSTER, HG
    PHYSICAL REVIEW A, 1991, 43 (04): : 1808 - 1812
  • [22] A SOLUTION USING PERIODIC-ORBITS
    BLAINE, L
    FIBONACCI QUARTERLY, 1992, 30 (04): : 371 - 372
  • [23] METHOD FOR CONSTRUCTING PERIODIC-ORBITS
    EDELMAN, C
    ASTRONOMY & ASTROPHYSICS, 1982, 111 (02) : 220 - 223
  • [24] PERIODIC-ORBITS, ADIABATICITY AND STABILITY
    POLLAK, E
    CHEMICAL PHYSICS, 1981, 61 (03) : 305 - 316
  • [25] Periodic orbits in magnetic billiards
    L.G.G.V. Dias da Silva
    M.A.M. de Aguiar
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 16 : 719 - 728
  • [26] Periodic orbits in magnetic billiards
    da Silva, LGGVD
    de Aguiar, MAM
    EUROPEAN PHYSICAL JOURNAL B, 2000, 16 (04): : 719 - 728
  • [27] Periodic orbits in polygonal billiards
    Biswas, D
    PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (02): : 487 - 501
  • [28] Periodic orbits in polygonal billiards
    Debabrata Biswas
    Pramana, 1997, 48 : 487 - 501
  • [29] THE PRESENT STATUS OF PERIODIC-ORBITS
    HADJIDEMETRIOU, JD
    CELESTIAL MECHANICS, 1981, 23 (03): : 277 - 286
  • [30] NOOSE BIFURCATION OF PERIODIC-ORBITS
    KENT, P
    ELGIN, J
    NONLINEARITY, 1991, 4 (04) : 1045 - 1061