ON REGULARITY OF DYNAMIC VALUE FUNCTION RELATED TO THE UTILITY MAXIMIZATION PROBLEM

被引:0
|
作者
Mania, M. [1 ]
Tevzadze, R. [2 ]
机构
[1] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, 6 Tamarashvili St, GE-0177 Tbilisi, Georgia
[2] Georgian Tech Univ, Vladimir Chavchanidze Inst Cybernet, GE-0186 Tbilisi, Georgia
关键词
Utility maximization; complete markets; Backward stochastic partial differential equation; value function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the regularity properties of both the dynamic value function and the optimal solution to the utility maximization problem for utility functions defined on the whole real line. These properties are needed to show that the value function satisfies the corresponding backward stochastic partial differential equation. In particular, in the case of complete markets we give conditions on the utility function when this equation admits a solution.
引用
收藏
页码:63 / 77
页数:15
相关论文
共 50 条
  • [41] Optimal investments for the standard maximization problem with non-concave utility function in complete market model
    Olena Bahchedjioglou
    Georgiy Shevchenko
    Mathematical Methods of Operations Research, 2022, 95 : 163 - 181
  • [42] Research on influence maximization problem in dynamic networks
    Wang, Xue-Guang
    INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1145 - 1152
  • [43] Smooth Value Functions for a Class of Nonsmooth Utility Maximization Problems
    Bian, Baojun
    Miao, Sheng
    Zheng, Harry
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 727 - 747
  • [44] Optimal Investment Strategy for a-Robust Utility Maximization Problem
    Yang, Zhou
    Li, Danping
    Zeng, Yan
    Liu, Guanting
    MATHEMATICS OF OPERATIONS RESEARCH, 2025, 50 (01)
  • [45] Dual formulation of the utility maximization problem under transaction costs
    Deelstra, G
    Pham, H
    Touzi, N
    ANNALS OF APPLIED PROBABILITY, 2001, 11 (04): : 1353 - 1383
  • [46] STABILITY OF THE UTILITY MAXIMIZATION PROBLEM WITH RANDOM ENDOWMENT IN INCOMPLETE MARKETS
    Kardaras, Constantinos
    Zitkovic, Gordan
    MATHEMATICAL FINANCE, 2011, 21 (02) : 313 - 333
  • [48] AN ENTROPY MAXIMIZATION PROBLEM RELATED TO OPTICAL COMMUNICATION
    MCELIECE, RJ
    RODEMICH, ER
    SWANSON, L
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (02) : 322 - 326
  • [49] Dual control Monte-Carlo method for tight bounds of value function in regime switching utility maximization
    Ma, Jingtang
    Li, Wenyuan
    Zheng, Harry
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 262 (03) : 851 - 862
  • [50] DYNAMIC-PROGRAMMING FORMULATION OF THE GROUP INTERVIEW PROBLEM WITH A GENERAL UTILITY FUNCTION
    CHUN, YH
    MOSKOWITZ, H
    PLANTE, RD
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1994, 78 (01) : 81 - 92