BIASING PARAMETER LIMITS FOR SYNERGISTIC MONTE-CARLO IN DEEP-PENETRATION CALCULATIONS

被引:2
|
作者
DWIVEDI, SR
GUPTA, HC
机构
[1] BARC, Bombay, India, BARC, Bombay, India
关键词
MATHEMATICAL STATISTICS - Monte Carlo Methods - NEUTRONS - Scattering;
D O I
10.13182/NSE86-A18611
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Monte Carlo scheme for deep-penetration problems, where both transport and collision kernels are biased synergistically, leads to minimum variance. Obtaining a proper biasing parameter is still a problem. For certain values of biasing parameter, the variance could be infinite even in a very simple problem. Using moment equations of statistical error prediction, a critical biasing parameter is obtained. A biasing parameter greater than the critical parameter may lead to an unbounded second moment in a simple one-dimensional homogeneous shield problem. A prescription is provided that may help to avoid a poor selection of the biasing parameter.
引用
收藏
页码:545 / 549
页数:5
相关论文
共 50 条