Racing to the precipice: a model of artificial intelligence development

被引:53
|
作者
Armstrong, Stuart [1 ]
Bostrom, Nick [1 ]
Shulman, Carl [1 ]
机构
[1] Univ Oxford, Future Humanity Inst, Dept Philosophy, Oxford OX1 1PT, England
关键词
AI; Artificial intelligence; Risk; Arms race; Coordination problem; Model;
D O I
10.1007/s00146-015-0590-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a simple model of an AI (artificial intelligence) arms race, where several development teams race to build the first AI. Under the assumption that the first AI will be very powerful and transformative, each team is incentivised to finish first-by skimping on safety precautions if need be. This paper presents the Nash equilibrium of this process, where each team takes the correct amount of safety precautions in the arms race. Having extra development teams and extra enmity between teams can increase the danger of an AI disaster, especially if risk-taking is more important than skill in developing the AI. Surprisingly, information also increases the risks: the more teams know about each others' capabilities (and about their own), the more the danger increases. Should these results persist in more realistic models and analysis, it points the way to methods of increasing the chance of the safe development of AI.
引用
收藏
页码:201 / 206
页数:6
相关论文
共 50 条
  • [21] Development of Precipitation Forecast Model Based on Artificial Intelligence and Subseasonal Clustering
    Parviz, Laleh
    Rasouli, Kabir
    JOURNAL OF HYDROLOGIC ENGINEERING, 2019, 24 (12)
  • [22] Development of an Artificial Intelligence Model for the Evaluation of Histopathologic Features of Eosinophilic Esophagitis
    Ricaurte, Luisa
    O'Sullivan, Donnchadh
    Cardenas, Maria F.
    Smith, Lindsey
    Sihvo, Hanna-Kaisa
    Westerling-Bui, Thomas
    Karthik, Ravi
    Lavey, Crystal
    Mounajjed, Taofic
    Hartley, Christopher
    Pai, Rish
    Graham, Rondell
    Hopson, Puanani
    Absah, Imad
    Moreira, Roger
    MODERN PATHOLOGY, 2022, 35 (SUPPL 2) : 510 - 511
  • [23] The requirements for performing artificial-intelligence-related research and model development
    Pareek, Anuj
    Lungren, Matthew P.
    Halabi, Safwan S.
    PEDIATRIC RADIOLOGY, 2022, 52 (11) : 2094 - 2100
  • [24] Development and validation of an electrocardiographic artificial intelligence model for detection of peripartum cardiomyopathy
    Karabayir, Ibrahim
    Wilkie, Gianna
    Celik, Turgay
    Butler, Liam
    Chinthala, Lokesh
    Ivanov, Alexander
    Simas, Tiffany A. Moore
    Davis, Robert L.
    Akbilgic, Oguz
    AMERICAN JOURNAL OF OBSTETRICS & GYNECOLOGY MFM, 2024, 6 (04)
  • [25] Towards Defining a Trustworthy Artificial Intelligence System Development Maturity Model
    Das, Sibanjan Debeeprasad
    Bala, Pradip Kumar
    Mishra, Arindra Nath
    JOURNAL OF COMPUTER INFORMATION SYSTEMS, 2024, 64 (06) : 775 - 796
  • [26] Development and validation of an artificial intelligence model to accurately predict spinopelvic parameters
    Harake, Edward S.
    Linzey, Joseph R.
    Jiang, Cheng
    Joshi, Rushikesh S.
    Zaki, Mark M.
    Jones, Jaes C.
    Khalsa, Siri Sahib S.
    Lee, John H.
    Wilseck, Zachary
    Joseph, Jacob R.
    Hollon, Todd C.
    Park, Paul
    JOURNAL OF NEUROSURGERY-SPINE, 2024, 41 (01) : 88 - 96
  • [27] Hybrid Artificial Intelligence Model for Detecting Signs of Delayed Child Development
    Souza, Daniel Leal
    dos Santos, Isadora Mendes
    Soares, Caio Johnston
    de Oliveira Neto, Jose Pires
    Cassiano, Lucas
    Proenca Neto, Marco Aurelio
    Pereira Cruz Ramos, Aline Maria
    de Oliveira, Liliane Afonso
    Marcal Pantoja de Araujo, Flavia Luciana Guimaraes
    Araujo, Fabricio Almeida
    de Souza Junior, Gilberto Nerino
    Braga, Marcus de Barros
    INTELLIGENT SYSTEMS, BRACIS 2024, PT IV, 2025, 15415 : 196 - 208
  • [28] Development of an Artificial Intelligence Model to Aid in Determination of Invasion in Pulmonary Adenocarcinoma
    Froemming, Jennifer Boland
    Kroneman, Trynda
    Stetzik, Lucas
    Lee, Seung-Yi
    Roden, Anja
    Yi, Eunhee
    Lo, Ying-Chun
    Maleszewski, Joseph
    Aubry, Marie-Christine
    LABORATORY INVESTIGATION, 2024, 104 (03) : S1898 - S1899
  • [29] Development of an explainable artificial intelligence model for Asian vascular wound images
    Lo, Zhiwen Joseph
    Mak, Malcolm Han Wen
    Liang, Shanying
    Chan, Yam Meng
    Goh, Cheng Cheng
    Lai, Tina
    Tan, Audrey
    Thng, Patrick
    Rodriguez, Jorge
    Weyde, Tillman
    Smit, Sylvia
    INTERNATIONAL WOUND JOURNAL, 2024, 21 (04)
  • [30] Development of Artificial Intelligence Joint Model for Hybrid Finite Element Analysis
    Jang, Kyung Suk
    Lim, Hyoung Jun
    Hwang, Ji Hye
    Shin, Jaeyoon
    Yun, Gun Jin
    JOURNAL OF THE KOREAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2020, 48 (10) : 773 - 782