INEXTENDIBLE CONFORMAL REALIZATIONS OF LORENTZ SURFACES IN MINKOWSKI 3-SPACE

被引:0
|
作者
WEINSTEIN, T [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:545 / 559
页数:15
相关论文
共 50 条
  • [41] Some classification of surfaces of revolution in Minkowski 3-space
    Choi, Miekyung
    Kim, Young
    Yoon, Dae
    JOURNAL OF GEOMETRY, 2013, 104 (01) : 85 - 106
  • [42] Timelike Circular Surfaces and Singularities in Minkowski 3-Space
    Li, Yanlin
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    SYMMETRY-BASEL, 2022, 14 (09):
  • [43] Entire surfaces of constant curvature in Minkowski 3-space
    Bonsante, Francesco
    Seppi, Andrea
    Smillie, Peter
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1261 - 1309
  • [44] New Types of Canal Surfaces in Minkowski 3-Space
    Ucum, Ali
    Ilarslan, Kazim
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 449 - 468
  • [45] Structure and characterization of ruled surfaces in Minkowski 3-space
    Guler, Fatma
    Kasap, Emin
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2016, 14 (02) : 155 - 164
  • [46] On bi-conservative surfaces in Minkowski 3-space
    Fu, Yu
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 66 : 71 - 79
  • [47] Spacelike Sweeping Surfaces and Singularities in Minkowski 3-Space
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    Alluhaibi, Nadia
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [48] ON THE SECOND KIND TWISTED SURFACES IN MINKOWSKI 3-SPACE
    Grbovic, Milica
    Nesovic, Emilija
    Pantic, Anica
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2015, 8 (02): : 9 - 20
  • [49] BERTRAND CURVES AND RAZZABONI SURFACES IN MINKOWSKI 3-SPACE
    Xu, Chuanyou
    Cao, Xifang
    Zhu, Peng
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 377 - 394
  • [50] A study on timelike circular surfaces in Minkowski 3-space
    Abdel-Baky, Rashad A.
    Alluhaibi, Nadia
    Ali, Akram
    Mofarreh, Fatemah
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (06)