On decidability properties of two fragments of the asynchronous pi-calculus

被引:0
|
作者
Aranda B, Jesus A. [1 ]
机构
[1] Univ Valle, Escuela Ingn Sistemas & Computac, Cali, Colombia
来源
INGENIERIA Y COMPETITIVIDAD | 2013年 / 15卷 / 02期
关键词
Expressiveness; divergence; convergence; process calculi;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In (Cacciagrano, et al., 2008) the authors studied the expressiveness of persistence in the asynchronous pi-calculus, henceforth A pi. They considered A pi and three sub-languages of it, each capturing one source of persistence: the persistent-input calculus (PIA pi), the persistent-output calculus (POA pi), and the persistent calculus (PA pi). They prove that, under some general conditions, there cannot be an encoding from A pi into a (semi)-persistent calculus preserving the must-testing semantics, a semantics sensitive to divergence. In this paper we support and strengthen the separation results of (Cacciagrano, et al., 2008) by showing that convergence and divergence are two decidable properties in a fragment of POA pi and PA pi, in contrast to what happen in A pi. Thus, it is shown that there cannot be a (computable) encoding from A pi into PA pi and in such a fragment of POA pi, preserving divergence or convergence. These impossibility results don't presuppose any condition on the encodings and involve directly convergence for first time in the study of the expressiveness of persistence of (A pi).
引用
收藏
页码:137 / 149
页数:13
相关论文
共 50 条
  • [21] Expressiveness of Probabilistic pi-calculus
    Sylvain, Pradalier
    Palamidessi, Catuscia
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2006, 164 (03) : 119 - 136
  • [22] A pi-calculus with explicit substitutions
    Ferrari, GL
    Montanari, U
    Quaglia, P
    THEORETICAL COMPUTER SCIENCE, 1996, 168 (01) : 53 - 103
  • [23] A theory of bisimulation for the pi-calculus
    Sangiorgi, D
    ACTA INFORMATICA, 1996, 33 (01) : 69 - 97
  • [24] SOME RESULTS ON THE PI-CALCULUS
    WALKER, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 491 : 21 - 35
  • [25] Hide and New in the pi-calculus
    Giunti, Marco
    Palamidessi, Catuscia
    Valencia, Frank D.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (89): : 65 - 79
  • [26] A Chart Semantics for the Pi-Calculus
    Borgstrom, Johannes
    Gordon, Andrew D.
    Phillips, Andrew
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2008, 194 (02) : 3 - 29
  • [27] Pi-calculus in logical form
    Bonsangue, M. M.
    Kurz, A.
    22ND ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2007, : 303 - +
  • [28] Semantic subtyping for the pi-calculus
    Castagna, Giuseppe
    De Nicola, Rocco
    Varacca, Daniele
    THEORETICAL COMPUTER SCIENCE, 2008, 398 (1-3) : 217 - 242
  • [29] ON THE PI-CALCULUS AND LINEAR LOGIC
    BELLIN, G
    SCOTT, PJ
    THEORETICAL COMPUTER SCIENCE, 1994, 135 (01) : 11 - 65
  • [30] A symbolic semantics for the pi-calculus
    Boreale, M
    DeNicola, R
    INFORMATION AND COMPUTATION, 1996, 126 (01) : 34 - 52