LORENZ-MIE SCATTERING BY SPHERES - SOME NEWLY RECOGNIZED PHENOMENA

被引:23
|
作者
KERKER, M
机构
关键词
D O I
10.1080/02786828208958594
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
引用
收藏
页码:275 / 291
页数:17
相关论文
共 50 条
  • [31] Towards photophoresis with the generalized Lorenz-Mie theory
    Ambrosio, Leonardo Andre
    Wang, Jiajie
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 288
  • [32] Shaped beam scattering from a single lymphocyte cell by generalized Lorenz-Mie theory
    Wang, Jia Jie
    Han, Lu
    Han, Yi Ping
    Gouesbet, Gerard
    Wu, Xuecheng
    Wu, Yingchun
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2014, 133 : 72 - 80
  • [33] A study of scattering properties of fly ash aerosols: comparison of laboratory and Lorenz-Mie results
    Zhang, Xuehai
    Wei, Heli
    Dai, Congming
    Cao, Ya'nan
    Li, Xuebin
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2015, 27 (07):
  • [34] Lorenz-Mie scattering of focused light via complex focus fields: An analytic treatment
    Gutierrez-Cuevas, R.
    Moore, Nicole J.
    Alonso, M. A.
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [35] DOES LORENZ-MIE SCATTERING-THEORY FOR ACTIVE PARTICLES LEAD TO A PARADOX - COMMENT
    ROSS, WD
    APPLIED OPTICS, 1980, 19 (16): : 2655 - 2655
  • [36] SYMMETRY-RELATIONS IN GENERALIZED LORENZ-MIE THEORY
    REN, KF
    GREHAN, G
    GOUESBET, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06): : 1812 - 1817
  • [37] Integral localized approximation in generalized Lorenz-Mie theory
    Universite et Inst Natl des Sciences, Appliques de Rouen, Mont-Saint-Aignan, France
    Appl Opt, 19 (4218-4225):
  • [38] Generalized Lorenz-Mie theories, from past to future
    Gouesbet, G
    Gréhan, G
    ATOMIZATION AND SPRAYS, 2000, 10 (3-5) : 277 - 333
  • [39] Asymptotic quantum elastic generalized Lorenz-Mie theory
    Gouesbet, G.
    OPTICS COMMUNICATIONS, 2006, 266 (02) : 704 - 709
  • [40] Asymptotic quantum inelastic generalized Lorenz-Mie theory
    Gouesbet, G.
    OPTICS COMMUNICATIONS, 2007, 278 (01) : 215 - 220