ON THE DOMINATION AND TOTAL DOMINATION NUMBERS OF CAYLEY SUM GRAPHS OVER Z(n)

被引:2
|
作者
Amooshahi, M. [1 ]
Taeri, B. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2014年 / 38卷 / 02期
关键词
Cayley sum graph; (Total) dominating set; (Total) domination number;
D O I
10.5937/KgJMath1402315A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite Abelian group and S be a subset of G. The Cayley sum graph Cay(+)(G, S) of G with respect to S is a graph whose vertex set is G and two vertices 9 and h are joined by an edge if and only if g + h is an element of S. In this paper, we prove some basic facts on the domination and total domination numbers of Cayley sum graphs. Then, we find the sharp bounds for domination number of Cay(+) (Z(n), S), where S = {1, 2,..., k} and n, k are positive integers with 1 <= k <= (n 1)/2.
引用
收藏
页码:315 / 320
页数:6
相关论文
共 50 条
  • [31] The Moore graphs; total domination and total dominator chromatic numbers
    Alaei, Maliheh
    Kazemi, Adel P.
    FILOMAT, 2024, 38 (25) : 8947 - 8960
  • [32] The minus total k-domination numbers in graphs
    Dayap, Jonecis
    Dehgardi, Nasrin
    Asgharsharghi, Leila
    Sheikholeslami, Seyed Mahmoud
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)
  • [33] Signed (total) domination numbers and Laplacian spectrum of graphs
    Ghameshlou, A. N.
    Sheikholeslami, S. M.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2009, 12 (01): : 93 - 99
  • [34] On the signed total Roman domination and domatic numbers of graphs
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2016, 214 : 179 - 186
  • [35] Twin signed total domination numbers in directed graphs
    Atapour, M.
    Bodaghli, A.
    Sheikholeslami, S. M.
    ARS COMBINATORIA, 2018, 138 : 119 - 131
  • [36] BOUNDS ON THE INVERSE SIGNED TOTAL DOMINATION NUMBERS IN GRAPHS
    Atapour, M.
    Norouzian, S.
    Sheikholeslami, S. M.
    Volkmann, L.
    OPUSCULA MATHEMATICA, 2016, 36 (02) : 145 - 152
  • [37] A lower bound on the total signed domination numbers of graphs
    Xin-zhong Lu
    Science in China Series A: Mathematics, 2007, 50 : 1157 - 1162
  • [38] A lower bound on the total signed domination numbers of graphs
    Lu, Xin-zhong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (08): : 1157 - 1162
  • [39] A lower bound on the total signed domination numbers of graphs
    Xin-zhong LU Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2007, (08) : 1157 - 1162
  • [40] Characterization of graphs with equal domination and connected domination numbers
    Chen, XG
    Sun, L
    Xing, HM
    DISCRETE MATHEMATICS, 2004, 289 (1-3) : 129 - 135