On conjectures on the defining set of (vertex) graph colourings

被引:0
|
作者
Mojdeh, Doostali [1 ]
机构
[1] Univ Marzandaran, Dept Math, POB 474164467, Babol Sar, Iran
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a given graph G = (V, E), a set of vertices S with an assignment of colours to them is a defining set of the vertex colouring of G, if there exists a unique extension of the colours of S to a chi(G) colouring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set (of vertex colouring) and its cardinality, the defining number, is denoted by d(G, chi). In Combinatorics, Graph Theory and Algorithms (1999), 461-467, Mandian et al. have studied d(C(m)x K-3, chi) d(C-m x K-4, chi) and d(C(m)x K-5, chi). They have conjectured: (a) d(C(m)x K-5, chi) = 2m + 1 for in odd; and (b) d(C(m)x K-4, chi) = m + 1. In this paper we disprove conjecture (a) for m(>= 5) odd and prove conjecture (b).
引用
收藏
页码:153 / 160
页数:8
相关论文
共 50 条
  • [1] Connectedness of the graph of vertex-colourings
    Cereceda, Luis
    van den Heuvel, Jan
    Johnson, Matthew
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 913 - 919
  • [2] RECONFIGURATION GRAPH FOR VERTEX COLOURINGS OF WEAKLY CHORDAL GRAPHS
    Feghali, C.
    Fiala, J.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 667 - 671
  • [3] Reconfiguration graph for vertex colourings of weakly chordal graphs
    Feghali, Carl
    Fiala, Jiri
    DISCRETE MATHEMATICS, 2020, 343 (03)
  • [4] Extending fixed vertex-colourings to total colourings
    Wong, SA
    DISCRETE MATHEMATICS, 1997, 177 (1-3) : 295 - 297
  • [5] Weighted Graph Irregularity Indices Defined on the Vertex Set of a Graph
    Alsheekhhussain, Zainab
    Reti, Tamas
    Ali, Akbar
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [6] On the feedback vertex set problem for a planar graph
    Praktische Mathematik, Chrstn.-Albrechts-Univ. zu Kiel, D-24098 Kiel, Germany
    Comput Vienna New York, 2 (129-155):
  • [7] On the feedback vertex set problem for a planar graph
    Hackbusch, W
    COMPUTING, 1997, 58 (02) : 129 - 155
  • [8] Graph colourings and partitions
    Yegnanarayanan, V
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 59 - 74
  • [9] On the Complexity of Digraph Colourings and Vertex Arboricity
    Hochstaettler, Winfried
    Schroeder, Felix
    Steiner, Raphael
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2020, 22 (01):
  • [10] VERTEX COLOURINGS OF MULTIGRAPHS WITH FORBIDDANCES ON EDGES
    Glebov, A. N.
    Pavlov, I. A.
    Khadaev, K. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 637 - 646