VERTEX COLOURINGS OF MULTIGRAPHS WITH FORBIDDANCES ON EDGES

被引:0
|
作者
Glebov, A. N. [1 ]
Pavlov, I. A. [2 ]
Khadaev, K. A. [3 ]
机构
[1] Sobolev Inst Math, 4 Koptyuga Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 2 Pirogova Str, Novosibirsk 630090, Russia
[3] Higher Sch Econ, 20 Myasnitskaya Str, Moscow 101000, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2020年 / 17卷
关键词
graph; multigraph; edge; colouring; list colouring; forbiddance; LIST-CHROMATIC INDEX;
D O I
10.33048/semi.2020.17.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study a new class of vertex colourings of multigraphs, where some pairs of colours are forbidden on the edges of a multigraph. We say that a multigraph G is (properly) (m, r)-colourable if for any given sets of r forbidden pairs of colours on the edges of G where exists a (proper) vertex m-colouring of G that respects all forbidden pairs. We determine all (properly) (m, r)-colourable stars, all (2, r)-colourable multigraphs for each r >= 1 and all (m, r)-colourable multighraphs, where r is large enough (close to m(2)). We also introduce a list version of (m, r)-colourability and establish (for the case of improper colourings) that the list (m, r)-colourability of a multigraph is equivalent to its (m, r)-colourability.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
  • [1] Partitions and edge colourings of multigraphs
    Kostochka, Alexandr V.
    Stiebitz, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [2] List edge and list total colourings of multigraphs
    Borodin, OV
    Kostochka, AV
    Woodall, DR
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) : 184 - 204
  • [3] Extending fixed vertex-colourings to total colourings
    Wong, SA
    DISCRETE MATHEMATICS, 1997, 177 (1-3) : 295 - 297
  • [4] Optimal edge-colourings for a class of planar multigraphs
    Marcotte, O
    COMBINATORICA, 2001, 21 (03) : 361 - 394
  • [5] Optimal Edge-Colourings for a Class of Planar Multigraphs
    Odile Marcotte
    Combinatorica, 2001, 21 : 361 - 394
  • [6] On the number of edges of separated multigraphs
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    JOURNAL OF GRAPH THEORY, 2023,
  • [7] List edge colourings of some 1-factorable multigraphs
    Ellingham, MN
    Goddyn, L
    COMBINATORICA, 1996, 16 (03) : 343 - 352
  • [8] On the Complexity of Digraph Colourings and Vertex Arboricity
    Hochstaettler, Winfried
    Schroeder, Felix
    Steiner, Raphael
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2020, 22 (01):
  • [9] Connectedness of the graph of vertex-colourings
    Cereceda, Luis
    van den Heuvel, Jan
    Johnson, Matthew
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 913 - 919
  • [10] On symmetries of edge and vertex colourings of graphs
    Lehner, Florian
    Smith, Simon M.
    DISCRETE MATHEMATICS, 2020, 343 (09)