VERTEX COLOURINGS OF MULTIGRAPHS WITH FORBIDDANCES ON EDGES

被引:0
|
作者
Glebov, A. N. [1 ]
Pavlov, I. A. [2 ]
Khadaev, K. A. [3 ]
机构
[1] Sobolev Inst Math, 4 Koptyuga Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 2 Pirogova Str, Novosibirsk 630090, Russia
[3] Higher Sch Econ, 20 Myasnitskaya Str, Moscow 101000, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2020年 / 17卷
关键词
graph; multigraph; edge; colouring; list colouring; forbiddance; LIST-CHROMATIC INDEX;
D O I
10.33048/semi.2020.17.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study a new class of vertex colourings of multigraphs, where some pairs of colours are forbidden on the edges of a multigraph. We say that a multigraph G is (properly) (m, r)-colourable if for any given sets of r forbidden pairs of colours on the edges of G where exists a (proper) vertex m-colouring of G that respects all forbidden pairs. We determine all (properly) (m, r)-colourable stars, all (2, r)-colourable multigraphs for each r >= 1 and all (m, r)-colourable multighraphs, where r is large enough (close to m(2)). We also introduce a list version of (m, r)-colourability and establish (for the case of improper colourings) that the list (m, r)-colourability of a multigraph is equivalent to its (m, r)-colourability.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
  • [31] Computational Complexity of Covering Three-Vertex Multigraphs
    Kratochvil, Jan
    Telle, Jan Arne
    Tesar, Marek
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, PT II, 2014, 8635 : 493 - 504
  • [32] On Vertex-Disjoint Triangles in Tripartite Graphs and Multigraphs
    Qingsong Zou
    Jiawang Li
    Zizheng Ji
    Graphs and Combinatorics, 2020, 36 : 1355 - 1361
  • [33] On Vertex-Disjoint Triangles in Tripartite Graphs and Multigraphs
    Zou, Qingsong
    Li, Jiawang
    Ji, Zizheng
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1355 - 1361
  • [34] Tight Algorithms for Vertex Cover with Hard Capacities on Multigraphs and Hypergraphs
    Wong, Sam Chiu-wai
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 2626 - 2637
  • [35] ASYMPTOTIC ENUMERATION OF LABELED MULTIGRAPHS BY VERTICES, EDGES, AND DEGREE PARITIES
    BENDER, EA
    RICHMOND, LB
    JOURNAL OF GRAPH THEORY, 1986, 10 (01) : 41 - 46
  • [36] Conflict-Free Colourings of Uniform Hypergraphs With Few Edges
    Kostochka, A.
    Kumbhat, M.
    Luczak, T.
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (04): : 611 - 622
  • [37] Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
    Bonamy, Marthe
    Johnson, Matthew
    Lignos, Ioannis
    Patel, Viresh
    Paulusma, Daniel
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (01) : 132 - 143
  • [38] Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
    Marthe Bonamy
    Matthew Johnson
    Ioannis Lignos
    Viresh Patel
    Daniël Paulusma
    Journal of Combinatorial Optimization, 2014, 27 : 132 - 143
  • [39] BIPARTITE MULTIGRAPHS WITH 1-FACTORS CONTAINING SPECIFIED EDGES
    ALLEN, SM
    JOURNAL OF GRAPH THEORY, 1995, 20 (03) : 323 - 326
  • [40] The spectrum problem for two multigraphs with four vertices and seven edges
    Bunge, R.C.
    Cornelius, E.D.
    El-Zanati, S.I.
    Mamboleo, W.H.
    Nguyen, N.T.
    Roberts, D.P.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 114 : 31 - 45