ON THE LOCAL LINEAR INDEPENDENCE OF TRANSLATES OF A BOX SPLINE

被引:66
|
作者
DAHMEN, W [1 ]
MICCHELLI, CA [1 ]
机构
[1] IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598
关键词
D O I
10.4064/sm-82-3-243-263
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:243 / 263
页数:21
相关论文
共 50 条
  • [31] TRANSLATES OF EXPONENTIAL BOX SPLINES AND THEIR RELATED SPACES
    BENARTZI, A
    RON, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 309 (02) : 683 - 710
  • [32] LOCAL LINEAR INDEPENDENCE CONDITIONS AND QUATERNIONIC EQUATIONS OF GRAVITATION
    AMARAL, CMD
    RODRIGUE.MC
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1973, 45 (01): : 81 - 86
  • [33] Local polynomial property and linear independence of refinable distributions
    X. Dai
    D. Huang
    Q. Sun
    Archiv der Mathematik, 2002, 78 : 74 - 80
  • [34] Local polynomial property and linear independence of refinable distributions
    Dai, XR
    Huang, D
    Sun, QY
    ARCHIV DER MATHEMATIK, 2002, 78 (01) : 74 - 80
  • [35] Orthogonal Linear Local Spline Discriminant Embedding for Face Recognition
    Lei, Ying-Ke
    Hu, Rong-Xiang
    Tang, Lei
    Zhang, Shan-Wen
    Huang, De-Shuang
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [36] ON THE SOLUTION OF CERTAIN SYSTEMS OF PARTIAL DIFFERENCE-EQUATIONS AND LINEAR-DEPENDENCE OF TRANSLATES OF BOX SPLINES
    DAHMEN, W
    MICCHELLI, CA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (01) : 305 - 320
  • [37] Linear Independence of T-Spline Blending Functions of Degree One for Isogeometric Analysis
    Wang, Aizeng
    Li, Ling
    Wang, Wei
    Du, Xiaoxiao
    Xiao, Feng
    Cai, Zhanchuan
    Zhao, Gang
    MATHEMATICS, 2021, 9 (12)
  • [38] A practical box spline compendium
    Kim, Minho
    Peters, Jorg
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 464
  • [39] A remark on the convolution with the box spline
    Vergne, Michele
    ANNALS OF MATHEMATICS, 2011, 174 (01) : 607 - 618
  • [40] BOX-SPLINE TILINGS
    DEBOOR, C
    HOLLIG, K
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (09): : 793 - 802