Hierarchical Dirichlet process model for gene expression clustering

被引:51
|
作者
Wang, Liming [1 ]
Wang, Xiaodong [2 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
D O I
10.1186/1687-4153-2013-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Clustering disaggregated load profiles using a Dirichlet process mixture model
    Granell, Ramon
    Axon, Colin J.
    Wallom, David C. H.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 92 : 507 - 516
  • [32] Hierarchical Dirichlet Process Hidden Markov Model for Unsupervised Bioacoustic Analysis
    Bartcus, Marius
    Chamroukhi, Faicel
    Glotin, Herve
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [33] A Spatial Dirichlet Process Mixture Model for Clustering Population Genetics Data
    Reich, Brian J.
    Bondell, Howard D.
    BIOMETRICS, 2011, 67 (02) : 381 - 390
  • [34] Hierarchical Dirichlet process and relative entropy
    Feng, Shui
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [35] Urban Activity Clustering Method Based on Dirichlet Process Mixture Model
    Chen Z.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (06): : 247 - 252
  • [36] Multimodal Categorization by Hierarchical Dirichlet Process
    Nakamura, Tomoaki
    Nagai, Takayuki
    Iwahashi, Naoto
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 1520 - 1525
  • [37] Clustering consistency with Dirichlet process mixtures
    Ascolani, F.
    Lijoi, A.
    Rebaudo, G.
    Zanella, G.
    BIOMETRIKA, 2023, 110 (02) : 551 - 558
  • [38] Hierarchical clustering of gene expression profiles with graphics hardware acceleration
    Zhang, Q
    Zhang, YS
    PATTERN RECOGNITION LETTERS, 2006, 27 (06) : 676 - 681
  • [39] Biologically supervised hierarchical clustering algorithms for gene expression data
    Boratyn, Grzegorz M.
    Datta, Susmita
    Datta, Somnath
    2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 5681 - +
  • [40] DYNAMIC TEXTURES CLUSTERING USING A HIERARCHICAL PITMAN-YOR PROCESS MIXTURE OF DIRICHLET DISTRIBUTIONS
    Fan, Wentao
    Bouguila, Nizar
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 296 - 300