Hierarchical Dirichlet process model for gene expression clustering

被引:51
|
作者
Wang, Liming [1 ]
Wang, Xiaodong [2 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
D O I
10.1186/1687-4153-2013-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A Dirichlet process mixture model for clustering longitudinal gene expression data
    Sun, Jiehuan
    Herazo-Maya, Jose D.
    Kaminski, Naftali
    Zhao, Hongyu
    Warren, Joshua L.
    STATISTICS IN MEDICINE, 2017, 36 (22) : 3495 - 3506
  • [2] The Use of Informed Priors in Biclustering of Gene Expression with the Hierarchical Dirichlet Process
    Tercan, Bahar
    Acar, Aybar C.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (05) : 1810 - 1821
  • [3] Evolutionary Clustering by Hierarchical Dirichlet Process with Hidden Markov State
    Xu, Tianbing
    Zhang, Zhongfei
    Yu, Philip S.
    Long, Bo
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 658 - +
  • [4] Research on dirichlet process mixture model for clustering
    Zhang B.
    Zhang K.
    Zhong L.
    Zhang X.
    Ingenierie des Systemes d'Information, 2019, 24 (02): : 183 - 189
  • [5] Hierarchical clustering of gene expression data
    Luo, F
    Tang, K
    Khan, L
    THIRD IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING - BIBE 2003, PROCEEDINGS, 2003, : 328 - 335
  • [6] Online Data Clustering Using Variational Learning of a Hierarchical Dirichlet Process Mixture of Dirichlet Distributions
    Fan, Wentao
    Bouguila, Nizar
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2014, 2014, 8505 : 18 - 32
  • [7] Clustering with label constrained Dirichlet process mixture model
    Burhanuddin, Nurul Afiqah
    Adam, Mohd Bakri
    Ibrahim, Kamarulzaman
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 107
  • [8] Graph Clustering Using Dirichlet Process Mixture Model
    Atastina, Imelda
    Sitohang, Benhard
    Putri, G. A. S.
    Moertini, Veronica S.
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE), 2017,
  • [9] A Bayesian model for supervised clustering with the dirichlet process prior
    Daume, H
    Marcu, D
    JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1551 - 1577
  • [10] The Semi-Hierarchical Dirichlet Process and Its Application to Clustering Homogeneous Distributions
    Beraha, Mario
    Guglielmi, Alessandra
    Quintana, Fernando A.
    BAYESIAN ANALYSIS, 2021, 16 (04): : 1187 - 1219