Adaptive bacterial colony chemotaxis multi-objective optimisation algorithm

被引:1
|
作者
Meng, Guo-yan [1 ]
Hu, Yu-lan [2 ]
Tian, Yun [2 ]
Zhao, Qing-Shan [2 ]
机构
[1] Xinzhou Teachers Univ, Dept Math, Xinzhou 034000, Shanxi, Peoples R China
[2] Xinzhou Teachers Univ, Dept Comp Sci & Technol, Xinzhou 034000, Shanxi, Peoples R China
关键词
multi-objective optimisation; MOO; adaptive chemotaxis step length; bacterial chemotaxis;
D O I
10.1504/IJCSM.2014.066449
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper focuses on the multi-objective optimisation problem To improve the convergence speed and the diversity of bacterial chemotaxis multi-objective optimisation algorithm (BCMOA) and avoid falling into local minimum, this paper proposes an adaptive bacterial colony chemotaxis multi-objective optimisation (ABCCMO) algorithm. Firstly, fast non-dominated sorting approach is used to initialise the position of all the bacterial. Secondly, this proposed algorithm adopts the adaptive chemotaxis step length. Thirdly, colony intelligent optimisation thought is adopted. Experimental results show that ABCCMO is able to find much better Pareto front solutions.
引用
收藏
页码:336 / 345
页数:10
相关论文
共 50 条
  • [31] An improved multi-objective ant colony algorithm for building life cycle energy consumption optimisation
    Yuan, Yan
    Yuan, Jingling
    Du, Hongfu
    Li, Li
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 43 (01) : 60 - 66
  • [32] Multi-objective bacterial colony optimization algorithm for integrated container terminal scheduling problem
    Ben Niu
    Qianying Liu
    Zhengxu Wang
    Lijing Tan
    Li Li
    Natural Computing, 2021, 20 : 89 - 104
  • [33] Multi-objective bacterial colony optimization algorithm for integrated container terminal scheduling problem
    Niu, Ben
    Liu, Qianying
    Wang, Zhengxu
    Tan, Lijing
    Li, Li
    NATURAL COMPUTING, 2021, 20 (01) : 89 - 104
  • [34] Multi-objective optimisation of retaining walls using hybrid adaptive gravitational search algorithm
    Khajehzadeh, Mohammad
    Taha, Mohd Raihan
    Eslami, Mahdiyeh
    CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 2014, 31 (03) : 229 - 242
  • [35] Multi-objective optimisation
    Bortfeld, T.
    RADIOTHERAPY AND ONCOLOGY, 2007, 84 : S72 - S73
  • [36] On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems
    Preuss, Oliver Ludger
    Rook, Jeroen
    Trautmann, Heike
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2024, PT I, 2024, 14634 : 305 - 321
  • [37] An improved multi-objective particle swarm optimisation algorithm
    Fu, Tiaoping
    Shang Ya-Ling
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 12 (1-2) : 66 - 71
  • [38] An evolutionary particle swarm algorithm for multi-objective optimisation
    Chen, Minyou
    Wu, Chuansheng
    Fleming, Peter
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 3269 - +
  • [39] A Multi-objective and Multidisciplinary Optimisation Algorithm for Microelectromechanical Systems
    Farnsworth, Michael
    Tiwari, Ashutosh
    Zhu, Meiling
    Benkhelifa, Elhadj
    NEO 2016: RESULTS OF THE NUMERICAL AND EVOLUTIONARY OPTIMIZATION WORKSHOP NEO 2016 AND THE NEO CITIES 2016 WORKSHOP, 2018, 731 : 205 - 238
  • [40] Enhanced Jaya Algorithm for Multi-objective Optimisation Problems
    Said, Rahaini Mohd
    Sallehuddin, Roselina
    Radzi, Nor Haizan Mohd
    Ali, Wan Fahmn Faiz Wan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) : 624 - 632