Adaptive bacterial colony chemotaxis multi-objective optimisation algorithm

被引:1
|
作者
Meng, Guo-yan [1 ]
Hu, Yu-lan [2 ]
Tian, Yun [2 ]
Zhao, Qing-Shan [2 ]
机构
[1] Xinzhou Teachers Univ, Dept Math, Xinzhou 034000, Shanxi, Peoples R China
[2] Xinzhou Teachers Univ, Dept Comp Sci & Technol, Xinzhou 034000, Shanxi, Peoples R China
关键词
multi-objective optimisation; MOO; adaptive chemotaxis step length; bacterial chemotaxis;
D O I
10.1504/IJCSM.2014.066449
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper focuses on the multi-objective optimisation problem To improve the convergence speed and the diversity of bacterial chemotaxis multi-objective optimisation algorithm (BCMOA) and avoid falling into local minimum, this paper proposes an adaptive bacterial colony chemotaxis multi-objective optimisation (ABCCMO) algorithm. Firstly, fast non-dominated sorting approach is used to initialise the position of all the bacterial. Secondly, this proposed algorithm adopts the adaptive chemotaxis step length. Thirdly, colony intelligent optimisation thought is adopted. Experimental results show that ABCCMO is able to find much better Pareto front solutions.
引用
收藏
页码:336 / 345
页数:10
相关论文
共 50 条
  • [1] An improved bacterial colony chemotaxis multi-objective optimisation algorithm
    Zhao, Qing-shan
    Hu, Yu-lan
    Tian, Yun
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2013, 4 (04) : 392 - 401
  • [2] A novel hybrid multi-objective bacterial colony chemotaxis algorithm
    Lu, Zhigang
    Geng, Lijun
    Huo, Guanghao
    Zhao, Hao
    Yao, Weitao
    Li, Guoqiang
    Guo, Xiaoqiang
    Zhang, Jiangfeng
    SOFT COMPUTING, 2020, 24 (03) : 2013 - 2032
  • [3] A novel hybrid multi-objective bacterial colony chemotaxis algorithm
    Zhigang Lu
    Lijun Geng
    Guanghao Huo
    Hao Zhao
    Weitao Yao
    Guoqiang Li
    Xiaoqiang Guo
    Jiangfeng Zhang
    Soft Computing, 2020, 24 : 2013 - 2032
  • [4] An improved multi-objective bacterial colony chemotaxis algorithm based on Pareto dominance
    Lu, Zhigang
    Qi, Shengjing
    Zhang, Jiangfeng
    Cai, Yao
    Guo, Xiaoqiang
    Luo, Shifan
    SOFT COMPUTING, 2022, 26 (01) : 69 - 87
  • [5] An improved multi-objective bacterial colony chemotaxis algorithm based on Pareto dominance
    Zhigang Lu
    Shengjing Qi
    Jiangfeng Zhang
    Yao Cai
    Xiaoqiang Guo
    Shifan Luo
    Soft Computing, 2022, 26 : 69 - 87
  • [6] Analysis on a Multi-objective Binary Disperse Bacterial Colony Chemotaxis Algorithm and Its Convergence
    Feng, Tao
    Liu, Zhaozheng
    Lu, Zhigang
    ADVANCES IN SWARM INTELLIGENCE, PT1, 2014, 8794 : 374 - 385
  • [7] An artificial bee colony algorithm for multi-objective optimisation
    Luo, Jianping
    Liu, Qiqi
    Yang, Yun
    Li, Xia
    Chen, Min-rong
    Cao, Wenming
    APPLIED SOFT COMPUTING, 2017, 50 : 235 - 251
  • [8] A novel multi-objective optimisation algorithm: artificial bee colony in conjunction with bacterial foraging
    Mahmoodabadi, Mohammad Javad
    Taherkhorsandi, Milad
    Maafi, Rahmat Abedzadeh
    Castillo-Villar, Krystel K.
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2015, 3 (04) : 369 - 386
  • [9] An improved multi-objective bacteria colony chemotaxis algorithm and convergence analysis
    Lu Zhi-gang
    Zhao Hao
    Xiao Hai-feng
    Wang Hao-rui
    Wang Hui-jing
    APPLIED SOFT COMPUTING, 2015, 31 : 274 - 292
  • [10] Multi-Colony Bacterial Foraging Algorithm for Multi-Objective Optimization
    Shao, Yichuan
    Tian, Liwei
    Jin, Wen
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2013, 7 (03): : 2109 - 2116