In this paper we analyze a cell vertex finite-volume method for linear and non-linear convection-diffusion problems in one dimension. For linear problems, the stability proof relies on compactness arguments developed by Grigorieff. However, Grigorieff's ideas have had to be extended to account for non-compact schemes. The analysis establishes second-order convergence of both the approximate solution and its gradient. This is despite the fact that the scheme is only first-order consistent. The analysis of the linear problem is taken over to non-linear problems via the theory of Lopez-Marcos and Sanz-Serna. Numerical experiments are provided which back up the analysis.
机构:
IRPHE Chateau-Gombert, Technopole de Chateau- Gombert, 13451 Marseille, 38, rue Frederic Joliot CurieIRPHE Chateau-Gombert, Technopole de Chateau- Gombert, 13451 Marseille, 38, rue Frederic Joliot Curie
Angot P.
Dolejší V.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Praha 1IRPHE Chateau-Gombert, Technopole de Chateau- Gombert, 13451 Marseille, 38, rue Frederic Joliot Curie
Dolejší V.
Feistauer M.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Praha 1IRPHE Chateau-Gombert, Technopole de Chateau- Gombert, 13451 Marseille, 38, rue Frederic Joliot Curie
Feistauer M.
Felcman J.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Praha 1IRPHE Chateau-Gombert, Technopole de Chateau- Gombert, 13451 Marseille, 38, rue Frederic Joliot Curie
机构:
Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Math Appl, Tehran 15914, IranAmirkabir Univ Technol, Fac Math & Comp Sci, Dept Math Appl, Tehran 15914, Iran