ON THE CONTROLLED ROTATION OF A SYSTEM OF 2 RIGID BODIES WITH ELASTIC ELEMENTS

被引:0
|
作者
BERBYUK, VE
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:164 / 170
页数:7
相关论文
共 50 条
  • [21] Relativistic elastostatics: I. Bodies in rigid rotation
    Beig, R
    Schmidt, BG
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (11) : 2249 - 2268
  • [22] Rotation of elastic bodies and the principle of relativity.
    Daniell, P. J.
    PHILOSOPHICAL MAGAZINE, 1915, 30 (175-80) : 754 - 761
  • [23] A RIGOROUS HAMILTONIAN APPROACH TO THE ROTATION OF ELASTIC BODIES
    GETINO, J
    FERRANDIZ, JM
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 58 (03): : 277 - 295
  • [24] Variational statements of the problem of controlled motions of a system with elastic elements
    Kostin, G. V.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2016, 80 (05): : 369 - 375
  • [25] Homogenization of elastic grids containing rigid elements
    Viviani, Luca
    Bigoni, Davide
    Piccolroaz, Andrea
    MECHANICS OF MATERIALS, 2024, 191
  • [26] On the equilibrium of elastic bodies containing thin rigid inclusions
    G. Leugering
    A. M. Khludnev
    Doklady Physics, 2010, 55 : 18 - 22
  • [27] SPATIAL MOTION OF RIGID BODIES CONNECTED BY AN ELASTIC ROD
    KRAVETS, VV
    KRYSHKO, EP
    SOVIET APPLIED MECHANICS, 1988, 24 (06): : 630 - 633
  • [28] Elastic rods, rigid bodies, quaternions and the last quadrature
    Kehrbaum, S
    Maddocks, JH
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1732): : 2117 - 2136
  • [29] Optimal rigid inclusion shapes in elastic bodies with cracks
    Khludnev, A.
    Negri, M.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (01): : 179 - 191
  • [30] Junction problem for rigid and semirigid inclusions in elastic bodies
    Khludnev, Alexander
    Popova, Tatiana
    ARCHIVE OF APPLIED MECHANICS, 2016, 86 (09) : 1565 - 1577