The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci Flow

被引:25
|
作者
Ye, Rugang [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Sobolev inequality; Logarithmic Sobolev inequality; Ricci flow; Heat operator;
D O I
10.1007/s40304-015-0046-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on Perelman's entropy monotonicity, uniform logarithmic Sobolev inequalities along the Ricci flow are derived. Then uniform Sobolev inequalities along the Ricci flow are derived via harmonic analysis of the integral transform of the relevant heat operator. These inequalities are fundamental analytic properties of the Ricci flow. They are also extended to the volume-normalized Ricci flow and the Kahler-Ricci flow.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [21] Modified logarithmic Sobolev inequalities and transportation inequalities
    Gentil, I
    Guillin, A
    Miclo, L
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (03) : 409 - 436
  • [22] Modified logarithmic Sobolev inequalities and transportation inequalities
    Ivan Gentil
    Arnaud Guillin
    Laurent Miclo
    Probability Theory and Related Fields, 2005, 133 : 409 - 436
  • [23] Logarithmic Sobolev inequalities: Conditions and counterexamples
    Wang, FY
    JOURNAL OF OPERATOR THEORY, 2001, 46 (01) : 183 - 197
  • [24] Logarithmic Sobolev Inequalities for Information Measures
    Kitsos, Christos P.
    Tavoularis, Nikolaos K.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (06) : 2554 - 2561
  • [25] Logarithmic Sobolev inequalities on path spaces
    Hsu, EP
    NEW TRENDS IN STOCHASTIC ANALYSIS, 1997, : 168 - 181
  • [26] Uniform Sobolev Inequality along the Sasaki-Ricci Flow
    Collins, Tristan C.
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (03) : 1323 - 1336
  • [27] FROM POINCARE TO LOGARITHMIC SOBOLEV INEQUALITIES: A GRADIENT FLOW APPROACH
    Dolbeault, Jean
    Nazaret, Bruno
    Savare, Giuseppe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3186 - 3216
  • [28] Logarithmic Sobolev inequalities and spectral gaps
    Carlen, E
    Loss, M
    RECENT ADVANCES IN THE THEORY AND APPLICATIONS OF MASS TRANSPORT, 2004, 353 : 53 - 60
  • [29] Modified logarithmic Sobolev inequalities on R
    Barthe, F.
    Roberto, C.
    POTENTIAL ANALYSIS, 2008, 29 (02) : 167 - 193
  • [30] Concentration of measure and logarithmic Sobolev inequalities
    Ledoux, M
    SEMINAIRE DE PROBABILITES XXXIII, 1999, 1709 : 120 - 216