THE NUMBER OF LIMIT-CYCLES OF POLYNOMIAL DEFORMATIONS OF A HAMILTONIAN VECTOR FIELD

被引:35
|
作者
MARDESIC, P [1 ]
机构
[1] FAC ELECT ENGN ZAGREB,DEPT MATH,YU-41000 ZAGREB,YUGOSLAVIA
关键词
D O I
10.1017/S0143385700005721
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:523 / 529
页数:7
相关论文
共 50 条
  • [41] The number of limit cycles for a family of polynomial systems
    Xiang, GH
    Han, MA
    Zhang, TH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) : 1669 - 1678
  • [42] The number of limit cycles of a quintic polynomial system
    Atabaigi, Ali
    Nyamoradi, Nemat
    Zangeneh, Hamid R. Z.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (04) : 677 - 684
  • [43] On the number of limit cycles which appear by perturbation of Hamiltonian two-saddle cycles of planar vector fields
    Lubomir Gavrilov
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 1 - 23
  • [44] On the number of limit cycles which appear by perturbation of Hamiltonian two-saddle cycles of planar vector fields
    Gavrilov, Lubomir
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (01): : 1 - 23
  • [45] ON LIMIT-CYCLES OF A CLASS OF SYSTEMS
    DOLOV, MV
    KUZMIN, RV
    DIFFERENTIAL EQUATIONS, 1993, 29 (09) : 1282 - 1285
  • [46] ELLIPTIC INTEGRALS AND LIMIT-CYCLES
    URBINA, AM
    DELABARRA, ML
    DELABARRA, GL
    CANAS, M
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1993, 48 (02) : 195 - 200
  • [47] FINITENESS THEOREMS FOR LIMIT-CYCLES
    ILYASHENKO, YS
    RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (02) : 129 - 203
  • [48] CONDITIONS FOR ABSENCE OF LIMIT-CYCLES
    COOK, PA
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (03) : 339 - 345
  • [49] LIMIT-CYCLES OF QUADRATIC SYSTEMS
    MIEUSSENS, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 291 (05): : 337 - 340
  • [50] REDUCE AND THE BIFURCATION OF LIMIT-CYCLES
    LLOYD, NG
    PEARSON, JM
    JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (02) : 215 - 224