Enhanced absorption in ultrathin Si by NiSi2 nanoparticles

被引:8
|
作者
Sachan, R. [1 ]
Gonzalez, C. [1 ,2 ]
Dyck, O. [1 ]
Wu, Y. [1 ]
Garcia, H. [3 ]
Pennycook, S. J. [4 ]
Rack, P. D. [1 ]
Duscher, G. [1 ,4 ]
Kalyanaraman, R. [1 ,5 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Ashok Leyland, Adv Engn, Madras, Tamil Nadu, India
[3] Southern Illinois Univ, Dept Phys, Edwardsville, IL 62026 USA
[4] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA
[5] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN USA
基金
美国国家科学基金会;
关键词
electron energy-loss spectroscopy; modeling; nanoparticles; photovoltaics;
D O I
10.1680/nme.12.00020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Various forms of Si including amorphous Si (a-Si) are important photovoltaic (PV) materials. However, in order to improve the cost-to-performance aspects of Si solar cells, such as by enabling ultrathin (< 500 nm) Si solar technology, new strategies are required to improve optical absorption within Si, which is a relatively poor absorber of light in the visible solar spectrum. In this study, the authors demonstrate a potential approach to enhance optical absorption in ultrathin a-Si films by embedding nickel di-silicide (NiSi2) nanoparticles (NPs). The Ni silicide NPs were engineered inside 50 nm thick a-Si by thermal annealing of co-deposited Ni and Si thin films on Si and quartz substrates. A quantitative electron energy-loss spectroscopy analysis was used to accurately determine the composition of silicide NPs. From broadband absorption optical studies, integrated optical absorption was found to increase by similar to 85% in the visible solar range (350-750 nm) and by similar to 150% in the infrared range (750-3000 nm) for the NiSi2 NP incorporated amorphous Si films. Optical modeling captured the absorption behavior of NP embedded a-Si thin films, thus suggesting an efficient route to design new photo-absorber NPs for future Si based PV devices.
引用
收藏
页码:11 / 19
页数:9
相关论文
共 50 条
  • [31] ATOMIC-STRUCTURE OF THE NISI2/(111)SI INTERFACE
    CHERNS, D
    ANSTIS, GR
    HUTCHISON, JL
    SPENCE, JCH
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1982, 46 (05): : 849 - 862
  • [32] Self-assembling of epitaxial NiSi2 in Si(001)
    Teichert, S
    Falke, M
    Beddies, G
    Hinneberg, HJ
    EPITAXIAL GROWTH-PRINCIPLES AND APPLICATIONS, 1999, 570 : 219 - 224
  • [33] HRTEM characterization of the NiSi2 growth into the Si(111) surface
    Hietschold, M
    Schulze, S
    Falke, U
    Fenske, F
    Wolke, W
    APPLIED SURFACE SCIENCE, 1996, 102 : 156 - 158
  • [34] ON THE STABILITY OF THIN EPITAXIAL NISI2 LAYERS ON SI (111)
    VONKANEL, H
    GRAF, T
    HENZ, J
    OSPELT, M
    WACHTER, P
    SUPERLATTICES AND MICROSTRUCTURES, 1986, 2 (04) : 363 - 368
  • [35] NISI2 LAYERS GROWN ON SI(111) BY MBE AND SPE
    VONKANEL, H
    GRAF, T
    HENZ, J
    OSPELT, M
    WACHTER, P
    JOURNAL OF CRYSTAL GROWTH, 1987, 81 (1-4) : 470 - 475
  • [36] DETERMINATION OF LATTICE MISMATCH IN NISI2 OVERLAYERS ON SI(111)
    ZEGENHAGEN, J
    KAYED, MA
    HUANG, KG
    GIBSON, WM
    PHILLIPS, JC
    SCHOWALTER, LJ
    HUNT, BD
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1987, 44 (04): : 365 - 369
  • [37] ELECTRICAL CHARACTERISTICS OF THIN NI2SI, NISI, AND NISI2 LAYERS GROWN ON SILICON
    COLGAN, EG
    MAENPAA, M
    FINETTI, M
    NICOLET, MA
    JOURNAL OF ELECTRONIC MATERIALS, 1983, 12 (02) : 413 - 422
  • [38] Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures
    Chuang, Chenfu
    Cheng, Shaoliang
    NANO RESEARCH, 2014, 7 (11) : 1592 - 1603
  • [39] LMTO-ASA CALCULATIONS ON SI/NISI2 INTERFACES
    FUJITANI, H
    ASANO, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1988, 57 (07) : 2253 - 2256
  • [40] NiSi2/Si interface chemistry and epitaxial growth mode
    Mi, S. B.
    Jia, C. L.
    Zhao, Q. T.
    Mantl, S.
    Urban, K.
    ACTA MATERIALIA, 2009, 57 (01) : 232 - 236