KURZWEIL-HENSTOCK AND KURZWEIL-HENSTOCK-PETTIS INTEGRABILITY OF STRONGLY MEASURABLE FUNCTIONS

被引:0
|
作者
Bongiorno, B. [1 ]
Di Piazza, Palermo L. [1 ]
Musial, Palermo K. [2 ]
机构
[1] Univ Palermo, Dept Math & Applicat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Wroclaw Univ, Inst Math, PL-50384 Wroclaw, Poland
来源
MATHEMATICA BOHEMICA | 2006年 / 131卷 / 02期
关键词
Kurzweil-Henstock integral; Kurzweil-Henstock-Pettis integral; Pettis integral;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the integrability of Banach valued strongly measurable functions defined on [0, 1]. In case of functions f given by Sigma(infinity)(n=1) x(n chi)E(n), where x(n) belong to a Banach space and the sets E-n are Lebesgue measurable and pairwise disjoint subsets of [0, 1], there are well known characterizations for the Bochner and for the Pettis integrability of f (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 50 条
  • [31] The Henstock-Kurzweil-Pettis Integrals and Existence Theorems for the Cauchy Problem
    M. Cichoń
    I. Kubiaczyk
    A. Sikorska
    Czechoslovak Mathematical Journal, 2004, 54 : 279 - 289
  • [32] The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem
    Cichon, M
    Kubiaczyk, I
    Sikorska, A
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (02) : 279 - 289
  • [33] Cauchy Criterion for the Henstock-Kurzweil Integrability of Fuzzy Number-Valued Functions
    Herawan, Tutut
    Abdullah, Zailani
    Chiroma, Haruna
    Sari, Eka Novita
    Ghazali, Rozaida
    Nawi, Nazri Mohd
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 1329 - 1333
  • [34] Henstock-Kurzweil Vector Distributions
    Perez-Becerra, Tomas
    Sanchez-Perales, Salvador
    Escamilla-Reyna, Juan A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (06)
  • [36] Nonlinear integral equations in Banach spaces and Henstock-Kurzweil-Pettis integrals
    Sikorska-Nowak, Aneta
    DYNAMIC SYSTEMS AND APPLICATIONS, 2008, 17 (01): : 97 - 107
  • [37] Beyond Riemann With Volterra, Henstock, and Kurzweil
    Khan, Mohammad Yasir Feroz
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2019, 24 (04): : 477 - 489
  • [38] A version of Hake's theorem for Kurzweil-Henstock integral in terms of variational measure
    Skvortsov, Valentin
    Tulone, Francesco
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (03) : 471 - 476
  • [39] ON A GENERALIZATION OF HENSTOCK-KURZWEIL INTEGRALS
    Maly, Jan
    Kuncova, Kristyna
    MATHEMATICA BOHEMICA, 2019, 144 (04): : 393 - 422
  • [40] The Lr Henstock-Kurzweil integral
    Musial, PM
    Sagher, Y
    STUDIA MATHEMATICA, 2004, 160 (01) : 53 - 81