KURZWEIL-HENSTOCK AND KURZWEIL-HENSTOCK-PETTIS INTEGRABILITY OF STRONGLY MEASURABLE FUNCTIONS

被引:0
|
作者
Bongiorno, B. [1 ]
Di Piazza, Palermo L. [1 ]
Musial, Palermo K. [2 ]
机构
[1] Univ Palermo, Dept Math & Applicat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Wroclaw Univ, Inst Math, PL-50384 Wroclaw, Poland
来源
MATHEMATICA BOHEMICA | 2006年 / 131卷 / 02期
关键词
Kurzweil-Henstock integral; Kurzweil-Henstock-Pettis integral; Pettis integral;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the integrability of Banach valued strongly measurable functions defined on [0, 1]. In case of functions f given by Sigma(infinity)(n=1) x(n chi)E(n), where x(n) belong to a Banach space and the sets E-n are Lebesgue measurable and pairwise disjoint subsets of [0, 1], there are well known characterizations for the Bochner and for the Pettis integrability of f (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 50 条