Modeling charge polarization voltage for large lithium-ion batteries in electric vehicles

被引:12
|
作者
Jiang, Yan [1 ]
Zhang, Caiping [1 ]
Zhang, Weige [1 ]
Shi, Wei [1 ]
Liu, Qiujiang [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect Engn, Beijing, Peoples R China
关键词
charge polarization voltage; modeling; lithium-ion batteries; electric vehicles;
D O I
10.3926/jiem.895
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose: Polarization voltage of the lithium-ion battery is an important parameter that has direct influence on battery performance. The paper aims to analyze the impedance characteristics of the lithium-ion battery based on EIS data. Design/methodology/approach: The effects of currents, initial SOC of the battery on charge polarization voltage are investigated, which is approximately linear function of charge current. The change of charge polarization voltage is also analyzed with the gradient analytical method in the SOC domain. The charge polarization model with two RC networks is presented, and parts of model parameters like Ohmic resistance and charge transfer impedance are estimated by both EIS method and battery constant current testing method. Findings: This paper reveals that the Ohmic resistance accounts for much contribution to battery total polarization compared to charge transfer impedance. Practical implications: Experimental results demonstrate the efficacy of the model with the proposed identification method, which provides the foundation for battery charging optimization. Originality/value: The paper analyzed the impedance characteristics of the lithium-ion battery based on EIS data, presented a charge polarization model with two RC networks, and estimated parameters like Ohmic resistance and charge transfer impedance.
引用
收藏
页码:686 / 697
页数:12
相关论文
共 50 条
  • [31] Modelling of lithium-ion batteries operation and life in electric vehicles
    Kasprzyk, Leszek
    Domeracka, Agnieszka
    Burzynski, Damian
    PRZEGLAD ELEKTROTECHNICZNY, 2018, 94 (12): : 158 - 161
  • [32] Efficiency Degradation Model of Lithium-Ion Batteries for Electric Vehicles
    Redondo-Iglesias, Eduardo
    Venet, Pascal
    Pelissier, Serge
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (02) : 1932 - 1940
  • [33] Modeling materials and charge transfer for lithium-ion batteries
    Raguette, Lauren
    Jorn, Ryan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [34] Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review
    Jian Duan
    Xuan Tang
    Haifeng Dai
    Ying Yang
    Wangyan Wu
    Xuezhe Wei
    Yunhui Huang
    Electrochemical Energy Reviews, 2020, 3 : 1 - 42
  • [35] Investigation of Temperature Performance of Lithium-ion Batteries for Electric Vehicles
    Zang, Mengyan
    Xie, Jinhong
    Ouyang, Jian
    Wang, Shuangfeng
    Wu, Xiaolan
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [36] Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles
    Li, Xiaoyu
    Wang, Zhenpo
    Zhang, Lei
    ENERGY, 2019, 174 : 33 - 44
  • [37] A review on thermal management of lithium-ion batteries for electric vehicles
    Zhang, Xinghui
    Li, Zhao
    Luo, Lingai
    Fan, Yilin
    Du, Zhengyu
    ENERGY, 2022, 238
  • [38] A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles
    Wang, Zuolu
    Feng, Guojin
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew
    ENERGY REPORTS, 2021, 7 : 5141 - 5161
  • [39] An Improved SOC Algorithm for Lithium-ion Batteries in Electric Vehicles
    Qiao, Lixian
    Wang, Jing
    Zheng, Baixiang
    2013 IEEE 4TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2014, : 313 - 316
  • [40] Comparative Analysis of Lithium-Ion Batteries for Urban Electric/Hybrid Electric Vehicles
    Velev, Boris
    Djudzhev, Bozhidar
    Dimitrov, Vladimir
    Hinov, Nikolay
    BATTERIES-BASEL, 2024, 10 (06):