MAGNETIC ORDER IN THE PERIODIC ANDERSON MODEL

被引:57
|
作者
MOLLER, B
WOLFLE, P
机构
[1] Institut für Theorie der Kondensierten Materie, Physikhochhaus, Universität Karlsruhe
关键词
D O I
10.1103/PhysRevB.48.10320
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the ground state of the symmetric, finite-U, periodic Anderson model using a mean-field slave-boson theory of the Kotliar-Ruckenstein type. At half filling (two electrons per site) we find a charge gap at all U > 0 and a transition from the paramagnetic to an antiferromagnetically ordered (AF) state at a critical value of the on-site interaction U for given hybridization V. The AF state is found to be lowest in energy within the manifold of spiral magnetic states. Results for the energy, hybridization matrix element, and local moment compare well with quantum Monte Carlo results for finite systems. Lowering the density induces a smooth crossover from AF to ferromagnetic (F) order via a spiral phase. Closely above 1/4 filling a first order transition from F to AF order is found. The insulating state at 1/4 filling is shown to be described by an AF Heisenberg model.
引用
收藏
页码:10320 / 10326
页数:7
相关论文
共 50 条
  • [41] SINGLET PAIRING IN THE PERIODIC ANDERSON MODEL
    OLES, B
    OLES, AM
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 54-7 : 413 - 415
  • [42] Ferromagnetic state in the periodic Anderson model
    Izyumov, YA
    Alekseev, DS
    PHYSICS OF METALS AND METALLOGRAPHY, 2004, 97 (01): : 15 - 24
  • [43] Quantum disorder in the periodic Anderson model
    Noce, C
    PHYSICAL REVIEW B, 2005, 71 (09)
  • [44] Perturbation theory for the periodic Anderson model
    Moskalenko, VA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 110 (02) : 243 - 255
  • [45] Superconducting instability in the periodic Anderson model
    Tahvildar-Zadeh, AN
    Hettler, MH
    Jarrell, M
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 78 (04): : 365 - 374
  • [46] Perturbation theory for the periodic Anderson model
    V. A. Moskalenko
    Theoretical and Mathematical Physics, 1997, 110 : 243 - 255
  • [47] DENSITIES OF STATES IN THE PERIODIC ANDERSON MODEL
    MARINARO, M
    NOCE, C
    ROMANO, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (21) : 3719 - 3728
  • [48] Dynamics and scaling in the periodic Anderson model
    N. S. Vidhyadhiraja
    D. E. Logan
    The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 39 : 313 - 334
  • [49] Itinerant ferromagnetism in the periodic Anderson model
    Batista, CD
    Bonca, J
    Gubernatis, JE
    PHYSICAL REVIEW B, 2003, 68 (21)
  • [50] New approach to periodic Anderson model
    Moskalenko, VA
    Digor, DF
    Dogotaru, LA
    Porcescu, IG
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1996, 105 (3-4) : 633 - 638