ON DIJKGRAAF-WITTEN INVARIANT FOR 3-MANIFOLDS

被引:0
|
作者
WAKUI, M [1 ]
机构
[1] KYUSHU UNIV 33,DEPT MATH,FUKUOKA 812,JAPAN
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:675 / 696
页数:22
相关论文
共 50 条
  • [11] The Dijkgraaf-Witten Invariants of Circle Bundles
    Vu The Khoi
    VIETNAM JOURNAL OF MATHEMATICS, 2014, 42 (03) : 393 - 399
  • [12] The reduced Dijkgraaf-Witten invariant of twist knots in the Bloch group of a finite field
    Karuo, Hiroaki
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2021, 30 (03)
  • [13] Dijkgraaf-Witten invariants of surfaces and projective representations of groups
    Turaev, Vladimir
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (11) : 2419 - 2430
  • [14] On third homologies of groups and of quandles via the Dijkgraaf-Witten invariant and Inoue-Kabaya map
    Nosaka, Takefumi
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (05): : 2655 - 2691
  • [15] Computing Untwisted Dijkgraaf-Witten Invariants for Arborescent Links
    Chen, Haimiao
    CONTEMPORARY MATHEMATICS, 2022, 3 (03): : 288 - 307
  • [16] Surgery formulae for the Seiberg–Witten invariant of plumbed 3-manifolds
    Tamás László
    János Nagy
    András Némethi
    Revista Matemática Complutense, 2020, 33 : 197 - 230
  • [17] On 2-dimensional Dijkgraaf-Witten theory with defects
    Dougherty, Aria L.
    Park, Hwajin
    Yetter, David N.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (05)
  • [18] Equivariant modular categories via Dijkgraaf-Witten theory
    Maier, Jennifer
    Nikolaus, Thomas
    Schweigert, Christoph
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (01) : 289 - 358
  • [19] On the Brauer Groups of Symmetries of Abelian Dijkgraaf-Witten Theories
    Fuchs, Jurgen
    Priel, Jan
    Schweigert, Christoph
    Valentino, Alessandro
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (02) : 385 - 405
  • [20] Surgery formulae for the Seiberg-Witten invariant of plumbed 3-manifolds
    Laszlo, Tamas
    Nagy, Janos
    Nemethi, Andras
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (01): : 197 - 230