Parallel Graph Processing on Graphics Processors Made Easy

被引:3
|
作者
Zhong, Jianlong [1 ]
He, Bingsheng [1 ]
机构
[1] Nanyang Technol Univ, Singapore, Singapore
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2013年 / 6卷 / 12期
关键词
D O I
10.14778/2536274.2536293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper demonstrates Medusa, a programming framework for parallel graph processing on graphics processors (GPUs). Medusa enables developers to leverage the massive parallelism and other hardware features of GPUs by writing sequential C/C++ code for a small set of APIs. This simplifies the implementation of parallel graph processing on the GPU. The runtime system of Medusa automatically executes the user-defined APIs in parallel on the GPU, with a series of graph-centric optimizations based on the architecture features of GPUs. We will demonstrate the steps of developing GPU-based graph processing algorithms with Medusa, and the superior performance of Medusa with both real-world and synthetic datasets.
引用
收藏
页码:1270 / 1273
页数:4
相关论文
共 50 条
  • [21] Stream Processing of Multichannel EEG Data Using Parallel Computing Technology with NVIDIA CUDA Graphics Processors
    V. V. Grubov
    V. O. Nedaivozov
    Technical Physics Letters, 2018, 44 : 453 - 455
  • [22] An Improved Keyword Search on Big Data Graph with Graphics Processors
    He, Xiu
    Yang, Bo
    COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, (ISICA 2015), 2016, 575 : 390 - 397
  • [23] Real-time data processing on graphics processors
    Lipowski, J
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS IV, 2006, 6159
  • [24] GPUCV: A framework for image processing acceleration with graphics processors
    Farrugia, Jean-Philippe
    Horain, Patrick
    Guehenneux, Erwan
    Alusse, Yannick
    2006 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO - ICME 2006, VOLS 1-5, PROCEEDINGS, 2006, : 585 - 588
  • [25] Parallel probabilistic model checking on general purpose graphics processors
    Bošnački D.
    Edelkamp S.
    Sulewski D.
    Wijs A.
    International Journal on Software Tools for Technology Transfer, 2011, 13 (1) : 21 - 35
  • [26] Design of a Task-Parallel Version of ILUPACK for Graphics Processors
    Aliaga, Jose I.
    Dufrechou, Ernesto
    Ezzatti, Pablo
    Quintana-Orti, Enrique S.
    HIGH PERFORMANCE COMPUTING CARLA 2016, 2017, 697 : 91 - 103
  • [27] Parallel Medical Image Reconstruction: From Graphics Processors to Grids
    Schellmann, Maraike
    Gorlatch, Sergei
    Meilaender, Dominik
    Koesters, Thomas
    Schaefers, Klaus
    Wuebbeling, Frank
    Burger, Martin
    PARALLEL COMPUTING TECHNOLOGIES, PROCEEDINGS, 2009, 5698 : 457 - 473
  • [28] Parallel Computation of Normalized Legendre Polynomials Using Graphics Processors
    Isupov, Konstantin
    Knyazkov, Vladimir
    Kuvaev, Alexander
    Popov, Mikhail
    SUPERCOMPUTING, RUSCDAYS 2016, 2016, 687 : 172 - 184
  • [29] Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting
    Huang, Yuan-Shao
    Yu, Kun-Ming
    Zhou, Li-Wei
    Hsu, Ching-Hsien
    Liu, Sheng-Hui
    NETWORK AND PARALLEL COMPUTING, NPC 2013, 2013, 8147 : 245 - 256
  • [30] Scout: a data-parallel programming language for graphics processors
    McCormick, Patrick
    Inman, Jeff
    Ahrens, James
    Mohd-Yusof, Jamaludin
    Roth, Greg
    Cummins, Sharen
    PARALLEL COMPUTING, 2007, 33 (10-11) : 648 - 662