HELMHOLTZ DECOMPOSITION ON MULTIPLY CONNECTED DOMAINS

被引:0
|
作者
DIERIECK, C
CROWET, F
机构
[1] Philips Research Lab, Brussels, Belg, Philips Research Lab, Brussels, Belg
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes the complete characterization of potentials and of stream functions, associated to general two-dimensional vector fields, as encountered in the Helmholtz decomposition problem. We especially focus attention on multiply connected domains. All the characterizations are formulated in a variational form and are thus well suited to finite element approximations.
引用
收藏
页码:242 / 253
页数:12
相关论文
共 50 条
  • [41] Spurious eigenvalue-free algorithms of the method of fundamental solutions for solving the Helmholtz equation in bounded multiply connected domains
    Li-Ping Zhang
    Zi-Cai Li
    Yimin Wei
    Hung-Tsai Huang
    Numerical Algorithms, 2022, 91 : 895 - 932
  • [42] Boundary Knots Method with ghost points for high-order Helmholtz-type PDEs in multiply connected domains
    Li, T.
    Lei, M.
    Jia, HongEn.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 169
  • [43] CONFORMAL MAPPING OF CIRCULAR MULTIPLY CONNECTED DOMAINS ONTO SLIT DOMAINS
    Czapla, Roman
    Mityushev, Vladimir
    Rylko, Natalia
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2012, 39 : 286 - 297
  • [44] Numerical Computing of Preimage Domains for Bounded Multiply Connected Slit Domains
    Nasser, Mohamed M. S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 582 - 606
  • [45] Conformal Mapping of Circular Multiply Connected Domains Onto Domains with Slits
    Czapla, Roman
    Mityushev, Vladimir V.
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 19 - 25
  • [46] MULTIPLY CONNECTED DOMAINS WHICH ARE CONFORMALLY EQUIVALENT TO CERTAIN SYMMETRICAL DOMAINS
    BEARDON, AF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1965, 40 (160P): : 619 - &
  • [47] ON CONFORMAL MAPS FROM MULTIPLY CONNECTED DOMAINS ONTO LEMNISCATIC DOMAINS
    Sete, Olivier
    Liesen, Jorg
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2016, 45 : 1 - 15
  • [48] Numerical Computing of Preimage Domains for Bounded Multiply Connected Slit Domains
    Mohamed M. S. Nasser
    Journal of Scientific Computing, 2019, 78 : 582 - 606
  • [49] Remark on the Helmholtz decomposition in domains with noncompact boundary
    Yasunori Maekawa
    Hideyuki Miura
    Mathematische Annalen, 2014, 359 : 1077 - 1095
  • [50] The Neumann problem and Helmholtz decomposition in convex domains
    Geng, Jun
    Shen, Zhongwei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (08) : 2147 - 2164