A NON-AUTONOMOUS LANGEVIN EQUATION

被引:1
|
作者
ABDELKADER, MA
机构
关键词
D O I
10.1080/00207178208922602
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:63 / 73
页数:11
相关论文
共 50 条
  • [31] EXISTENCE OF ATTRACTORS FOR THE NON-AUTONOMOUS BERGER EQUATION WITH NONLINEAR DAMPING
    Yang, Lu
    Wang, Xuan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [32] A Higher-Order Non-autonomous Semilinear Parabolic Equation
    Belluzi, Maykel
    Bezerra, Flank D. M.
    Nascimento, Marcelo J. D.
    Santos, Lucas A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (01):
  • [33] The non-autonomous wave equation with general Wentzell boundary conditions
    Favini, A
    Gal, CG
    Goldstein, GR
    Goldstein, JA
    Romanelli, S
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 : 317 - 329
  • [34] PERSISTENCE AND EXTINCTION OF A NON-AUTONOMOUS LOGISTIC EQUATION WITH RANDOM PERTURBATION
    Liu, Meng
    Wang, Ke
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [35] The well-posedness of a parabolic non-autonomous semilinear equation
    Fkirine, Mohamed
    Hadd, Said
    IFAC PAPERSONLINE, 2022, 55 (12): : 198 - 201
  • [36] Ground state solution on a non-autonomous Kirchhoff type equation
    Liu, Jiu
    Liao, Jia-Feng
    Pan, Hui-Lan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (03) : 878 - 888
  • [37] A Non-autonomous Damped Wave Equation with a Nonlinear Memory Term
    Bruno de Andrade
    Nguyen Huy Tuan
    Applied Mathematics & Optimization, 2022, 85
  • [38] Generalized Stability Theorem for Non-autonomous Differential Equation with Application
    Zhang, Mei
    Min, Lequan
    Yang, Xiuping
    2015 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY, 2015, : 156 - 163
  • [39] Uniform attractors for a non-autonomous viscoelastic equation with a past history
    Qin, Yuming
    Feng, Baowei
    Zhang, Ming
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 101 : 1 - 15
  • [40] NON-AUTONOMOUS VAN VANDERPOL POL EQUATION WITH LARGE PARAMETER
    LLOYD, NG
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 72 (SEP): : 213 - &