An analytical, inelastic micromechanical model, with temperature-dependent matrix properties, is employed to study metal matrix composite (MMC) laminates subjected to thermomechanical loading. The predictions are based on knowledge of the thermomechanical response of transversely isotropic, elastic graphite or silicon carbide fibers and elastic-viscoplastic, work-hardening, temperature-dependent titanium or aluminum matrix. The model is applied to predict initial yielding and thermomechanical response of silicon carbide/titanium and graphite/aluminum laminates. The results demonstrate the effect of cooling from a stress-free temperature and the mismatch of thermal and mechanical properties of the constituent phases on the laminate's subsequent mechanical response. Typical results are presented for [+/-45]x laminates subjected to monotonic tension, cyclic tension/compression, biaxial tension, and thermal loadings. It is shown that inclusion of temperature-dependent properties has a significant influence on both the initial yield surface and the inelastic response of metal matrix composites. It is also shown that the degree of applied biaxial loading has a significant effect on the response of laminates.