HAMILTONIAN GRAPHS INVOLVING DISTANCES

被引:4
|
作者
CHEN, GT
SCHELP, RH
机构
[1] Department of Mathematical Sciences, Memphis State University, Memphis, Tennessee
关键词
D O I
10.1002/jgt.3190160203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order n. We show that if G is a 2-connected graph and max{d(u),d(upsilon)} + \N(u) or N(upsilon)\ greater-than-or-equal-to n for each pair of vertices u, upsilon at distance two, then either G is hamiltonian or G congruent-to 3K(n/3) or T1 or T2, where n = 0 (mod 3), and T1 and T2 are the edge sets of two vertex disjoint triangles containing exactly one vertex from each K(n/3). This result generalizes both Fan's and Lindquester's results as well as several others.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 50 条
  • [41] Hamiltonian Kneser Graphs
    Ya-Chen Chen
    Z. Füredi
    Combinatorica, 2002, 22 : 147 - 149
  • [42] HAMILTONIAN TOTAL GRAPHS
    FLEISCHN.H
    HOBBS, AM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A477 - A477
  • [43] HAMILTONIAN PANCYCLIC GRAPHS
    AMAR, D
    FLANDRIN, E
    FOURNIER, I
    GERMA, A
    DISCRETE MATHEMATICS, 1983, 46 (03) : 327 - 327
  • [44] ON HAMILTONIAN LINE GRAPHS
    CHEN, ZH
    ARS COMBINATORIA, 1992, 33 : 289 - 294
  • [45] Hamiltonian Spectra of Graphs
    Tong, Li-Da
    Yang, Hao-Yu
    Zhu, Xuding
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 827 - 836
  • [46] Hamiltonian Extendable Graphs
    Yang, Xiaojing
    Xiong, Liming
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) : 843 - 859
  • [47] On pancyclism in hamiltonian graphs
    Kouider, M
    Marczyk, A
    DISCRETE MATHEMATICS, 2002, 251 (1-3) : 119 - 127
  • [48] Hamiltonian colorings of graphs
    Chartrand, G
    Nebesky, L
    Zhang, P
    DISCRETE APPLIED MATHEMATICS, 2005, 146 (03) : 257 - 272
  • [49] Panpositionable Hamiltonian graphs
    Kao, Shin-Shin
    Lin, Cheng-Kuan
    Huang, Hua-Min
    Hsu, Lih-Hsing
    ARS COMBINATORIA, 2006, 81 : 209 - 223
  • [50] DIRECTED HAMILTONIAN GRAPHS
    MANOUSSAKIS, Y
    JOURNAL OF GRAPH THEORY, 1992, 16 (01) : 51 - 59