NUMERICAL EVALUATION OF PRINCIPAL VALUE INTEGRALS BY FINITE-PART INTEGRATION

被引:149
|
作者
KUTT, HR [1 ]
机构
[1] CSIR,NATL RES INST MATH SCI,POB 395,PRETORIA,SOUTH AFRICA
关键词
D O I
10.1007/BF01436592
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:205 / 210
页数:6
相关论文
共 50 条
  • [21] Definitions, properties and applications of finite-part integrals
    Monegato, G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (02) : 425 - 439
  • [22] NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VALUE INTEGRALS
    CHAWLA, MM
    RAMAKRISHNA, TR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A20 - A20
  • [23] Efficient numerical methods for hypersingular finite-part integrals with highly oscillatory integrands
    Xu, Zhenhua
    Lv, Zhanmei
    Liu, Guidong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 433
  • [24] On uniform approximations to hypersingular finite-part integrals
    Xiang, Shuhuang
    Fang, Chunhua
    Xu, Zhenhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (02) : 1210 - 1228
  • [25] FINITE-PART INTEGRALS - GENERALIZATION OF HADAMARDS DEFINITION
    PREZIOSI, B
    NUOVO CIMENTO, 1964, 31 (01): : 187 - +
  • [26] Finite-part integration of the Hilbert transform
    Blancas, Philip Jordan D.
    Galapon, Eric A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025,
  • [27] REGULARIZATION AND RENORMALIZATION .3. FINITE-PART INTEGRALS
    CAIANIELLO, ER
    CAMPOLATTARO, A
    PREZIOSI, B
    NUOVO CIMENTO, 1960, 18 (03): : 505 - 524
  • [28] The Euler-Maclaurin expansion and finite-part integrals
    G. Monegato
    J.N. Lyness
    Numerische Mathematik, 1998, 81 : 273 - 291
  • [29] On computation of finite-part integrals of highly oscillatory functions
    Chen, Ruyun
    Li, Yu
    Zhou, Yongxiong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 460
  • [30] ON KUTT GAUSSIAN QUADRATURE RULE FOR FINITE-PART INTEGRALS
    IOAKIMIDIS, NI
    APPLIED NUMERICAL MATHEMATICS, 1989, 5 (03) : 209 - 213