CENTRALIZER OF REEB VECTOR FIELD IN CONTACT LIE GROUPS

被引:0
|
作者
Hassanzadeh, Babak [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Centralizer; left invariant contact structure;
D O I
10.7546/jgsp-48-2018-23-31
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the centralizer of Reeb vector field of a contact Lie group with a left invariant Riemannian metric while contact structure is left invariant. Then we decompose the Lie algebra of this Lie groups to centralizer of Reeb vector field and its orthogonal complement and using this decomposition the contact Lie group is investigated. Furthermore, in last section a special automorphism is defined and studied which it keeps the contact form.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 50 条
  • [21] AFFINE KILLING REEB VECTOR FIELD FOR A REAL HYPERSURFACE IN THE COMPLEX QUADRIC
    Lee, Hyunjin
    Kim, Gyu Jong
    Suh, Young Jin
    OSAKA JOURNAL OF MATHEMATICS, 2023, 60 (01) : 133 - 151
  • [22] Semi-invariant conformal submersions with horizontal Reeb vector field
    Pandey, Shashikant
    Prasad, Rajendra
    Gupta, Punam
    Singh, Shweta
    FILOMAT, 2023, 37 (12) : 3819 - 3836
  • [23] Codimension 2 submanifolds of paracosymplectic manifolds with normal Reeb vector field
    Bejan, Cornelia-Livia
    Nakova, Galia
    FILOMAT, 2023, 37 (25) : 8693 - 8707
  • [24] Learning Stable Vector Fields on Lie Groups
    Urain, Julen
    Tateo, Davide
    Peters, Jan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 12569 - 12576
  • [25] Slant Null Curves on Normal Almost Contact B-Metric 3-Manifolds with Parallel Reeb Vector Field
    Manev, Hristo
    Nakova, Galia
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 933 - 947
  • [26] LIFTING VECTOR FIELDS TO NILPOTENT LIE GROUPS
    GOODMAN, R
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1978, 57 (01): : 77 - 85
  • [27] Vector fields, flows and Lie groups of diffeomorphisms
    Peterman, A
    EUROPEAN PHYSICAL JOURNAL C, 2000, 14 (04): : 705 - 708
  • [28] Complex contact Lie groups and generalized complex Heisenberg groups
    Foreman, Brendan
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (05) : 443 - 446
  • [29] Vector fields, flows and Lie groups of diffeomorphisms
    A. Peterman
    The European Physical Journal C - Particles and Fields, 2000, 14 : 705 - 708
  • [30] The centralizer algebras of Lie color algebras
    Moon, D
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (07) : 3233 - 3261