Lambek Calculus with a Unit and One Division

被引:2
|
作者
Kuznetsov, S. D. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.3103/S0027132211040085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a substitution that reduces the derivability in the Lambek calculus with a unit and one division to the derivability in the Lambek calculus with one division permitting empty antecedents. Using this substitution, we establish the existence of an algorithm checking the derivability in the Lambek calculus with a unit and one division in polynomial time.
引用
收藏
页码:173 / 175
页数:3
相关论文
共 50 条
  • [41] Full Lambek Calculus in natural deduction
    Zimmermann, Ernst
    MATHEMATICAL LOGIC QUARTERLY, 2010, 56 (01) : 85 - 88
  • [42] Lambek calculus is NP-complete
    Pentus, Mati
    THEORETICAL COMPUTER SCIENCE, 2006, 357 (1-3) : 186 - 201
  • [43] Versions of a Local Contraction Subexponential in the Lambek Calculus
    Valinkin, M. V.
    ALGEBRA AND LOGIC, 2022, 61 (04) : 271 - 287
  • [44] Lambek Calculus with Banged Atoms for Parasitic Gaps
    Sadrzadeh, Mehrnoosh
    Strassburger, Lutz
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION, WOLLIC 2024, 2024, 14672 : 193 - 209
  • [45] L-Models and R-Models for Lambek Calculus Enriched with Additives and the Multiplicative Unit
    Kanovich, Max
    Kuznetsov, Stepan
    Scedrov, Andre
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION (WOLLIC 2019), 2019, 11541 : 373 - 391
  • [46] COMPLEXITY OF THE INFINITARY LAMBEK CALCULUS WITH KLEENE STAR
    Kuznetsov, Stepan
    REVIEW OF SYMBOLIC LOGIC, 2021, 14 (04): : 946 - 972
  • [47] A concrete categorical model for the Lambek Syntactic Calculus
    Correa, MD
    Haeusler, EH
    MATHEMATICAL LOGIC QUARTERLY, 1997, 43 (01) : 49 - 59
  • [48] Command injection attacks, continuations, and the Lambek calculus
    Thielecke, Hayo
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2016, (212): : 81 - 96
  • [49] Conjoinability in 1-discontinuous Lambek calculus
    Sorokin, A., 1600, Springer Verlag (8222):
  • [50] Classical non-associative Lambek calculus
    De Groote P.
    Lamarche F.
    Studia Logica, 2002, 71 (3) : 355 - 388