EXTREMAL PROBLEMS CONCERNING KNESER GRAPHS

被引:26
|
作者
FRANKL, P [1 ]
FUREDI, Z [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1364 BUDAPEST,HUNGARY
关键词
D O I
10.1016/0095-8956(86)90084-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:270 / 284
页数:15
相关论文
共 50 条
  • [21] Extremal problems in royal colorings of graphs
    Ali, Akbar
    Chartrand, Gary
    Hallas, James
    Zhang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 201 - 218
  • [22] Graphs cospectral with Kneser graphs
    Haemers, Willem H.
    Ramezani, Farzaneh
    COMBINATORICS AND GRAPHS, 2010, 531 : 159 - +
  • [23] Hamiltonian Kneser graphs
    Chen, YC
    Füredi, Z
    COMBINATORICA, 2002, 22 (01) : 147 - 149
  • [24] The toughness of Kneser graphs
    Park, Davin
    Ostuni, Anthony
    Hayes, Nathan
    Banerjee, Amartya
    Wakhare, Tanay
    Wong, Wiseley
    Cioaba, Sebastian
    DISCRETE MATHEMATICS, 2021, 344 (09)
  • [25] On the diameter of Kneser graphs
    Valencia-Pabon, M
    Vera, JC
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 383 - 385
  • [26] Pebbling in Kneser Graphs
    Adauto, Matheus
    Bardenova, Viktoriya
    da Cruz, Mariana
    de Figueiredo, Celina
    Hurlbert, Glenn
    Sasaki, Diana
    LATIN 2024: THEORETICAL INFORMATICS, PT II, 2024, 14579 : 46 - 60
  • [27] Hamiltonian Kneser Graphs
    Ya-Chen Chen
    Z. Füredi
    Combinatorica, 2002, 22 : 147 - 149
  • [28] Path Decompositions of Kneser and Generalized Kneser Graphs
    Rodger, C. A.
    Whitt, Thomas Richard, III
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (03): : 610 - 619
  • [29] Extremal problems concerning ordered intersections of sets
    Frankl, Peter
    Wang, Jian
    COMBINATORICS AND NUMBER THEORY, 2024, 13 (02):
  • [30] Kneser graphs are Hamiltonian
    Merino, Arturo
    Muetze, Torsten
    Namrata
    ADVANCES IN MATHEMATICS, 2025, 468