Motion Estimation in Real-Time with Optimisation Methods

被引:0
|
作者
Bruhn, Andres [1 ]
机构
[1] Univ Saarland, Fak Math & Informat, Arbeits Grp Mathemat Bildverarbeitung, Gebude E 1.1, D-66041 Saarbrucken, Germany
来源
IT-INFORMATION TECHNOLOGY | 2008年 / 50卷 / 01期
关键词
I.4.8 [Computing Methodologies: Image Processing: Scene Analysis; G.1.6 [Mathematics of Computing: Numerical Analysis: Optimisation; G.1.8 [Mathematics of Computing: Numerical Analysis: Partial Differential Equations; G.1.3 [Mathematics of Computing: Numerical Analysis: Numerical Linear Algebra;
D O I
10.1524/itit.2008.0463
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The estimation of motion information from image sequences is one of the key problems in computer vision. In this context, global optimisation methods play an important role, since they allow for both a precise and dense estimation of the displacement field between consecutive frames. This thesis contributes in two ways to the research in motion analysis: (I) On one hand, novel models for optimisation techniques are presented that yield the most accurate results in the entire literature. (II) On the other hand, specifically adapted multigrid algorithms are developed, that enable the computation of the results in real-time. Thus, for the first time, it becomes possible to apply such high accuracy techniques also in practice.
引用
收藏
页码:66 / 69
页数:4
相关论文
共 50 条
  • [31] HYBRID VISUAL AND INERTIAL RANSAC FOR REAL-TIME MOTION ESTIMATION
    Alibay, Manu
    Auberger, Stephane
    Stanciulescu, Bogdan
    Fuchs, Philippe
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 179 - 183
  • [32] A survey on real-time motion estimation techniques for underwater robots
    Fausto Ferreira
    Gianmarco Veruggio
    Massimo Caccia
    Gabriele Bruzzone
    Journal of Real-Time Image Processing, 2016, 11 : 693 - 711
  • [33] Real-Time Motion Estimation Using Spatiotemporal Filtering in FPGA
    Orchard, Garrick
    Thakor, Nitish V.
    Etienne-Cummings, Ralph
    2013 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2013, : 306 - 309
  • [34] A survey on real-time motion estimation techniques for underwater robots
    Ferreira, Fausto
    Veruggio, Gianmarco
    Caccia, Massimo
    Bruzzone, Gabriele
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2016, 11 (04) : 693 - 711
  • [35] An architecture for affine motion estimation in real-time video coding
    Girotra, A
    Johar, S
    Ghosh, D
    Chakrabarti, I
    APCC 2003: 9TH ASIA-PACIFIC CONFERENCE ON COMMUNICATION, VOLS 1-3, PROCEEDINGS, 2003, : 103 - 107
  • [36] Finger kinematic modeling and real-time hand motion estimation
    Cerveri, P.
    De Momi, E.
    Lopomo, N.
    Baud-Bovy, G.
    Barros, R. M. L.
    Ferrigno, G.
    ANNALS OF BIOMEDICAL ENGINEERING, 2007, 35 (11) : 1989 - 2002
  • [37] Real-time motion estimation for image and video processing applications
    Guillermo Botella
    Carlos García
    Journal of Real-Time Image Processing, 2016, 11 : 625 - 631
  • [38] REAL-TIME BLOCK MATCHING MOTION ESTIMATION ONTO GPGPU
    Monteiro, Eduarda
    Maule, Marilena
    Sampaio, Felipe
    Diniz, Claudio
    Zatt, Bruno
    Bampi, Sergio
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1693 - 1696
  • [39] Real-Time Velocity Estimation Algorithm for a Multivariable Motion Sensor
    Mazzoli, Federico
    Alghisi, Davide
    Ferrari, Vittorio
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [40] Real-time motion estimation for image and video processing applications
    Botella, Guillermo
    Garcia, Carlos
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2016, 11 (04) : 625 - 631