MAXIMUM-LIKELIHOOD-ESTIMATION FOR GALTON-WATSON PROCESSES

被引:0
|
作者
EPPS, TW
SENETA, E
机构
[1] UNIV VIRGINIA,DEPT ECON,CHARLOTTESVILLE,VA 22901
[2] UNIV SYDNEY,DEPT MATH STAT,SYDNEY,NSW 2006,AUSTRALIA
关键词
BRANCHING PROCESSES; MARKOV CHAIN; TRANSITION PROBABILITIES;
D O I
10.1080/03610929208830811
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A recursive formula is derived for the transition probabilities of a Galton-Watson branching process in which members of the population have at most K offspring. Expressions are found for the derivatives of these transition probabilities with respect to the parameters, p0, p1,..., p(K), that govern the probabilities of having 0,1,...,K offspring. The recursive formula and the expressions for the derivatives make it feasible to estimate the parameters of the offspring distribution by the method of maximum likelihood. For various processes with K-2 we compare the small-sample properties of maximum-likelihood estimators with those of "method-of-moments" estimators, which are derived from the usual consistent estimators of the mean and variance of numbers of offspring. The m.l.e.s are found to have smaller mean squared errors.
引用
收藏
页码:733 / 748
页数:16
相关论文
共 50 条
  • [31] A Special Family of Galton-Watson Processes with Explosions
    Sagitov, Serik
    Lindo, Alexey
    BRANCHING PROCESSES AND THEIR APPLICATIONS, 2016, 219 : 237 - 254
  • [32] STRUCTURE OF REDUCED CRITICAL GALTON-WATSON PROCESSES
    FLEISCHMANN, K
    SIEGMUNDSCHULTZE, R
    MATHEMATISCHE NACHRICHTEN, 1977, 79 : 233 - 241
  • [33] CONVERGENCE OF GALTON-WATSON BRANCHING-PROCESSES
    ALIEV, SA
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1983, 4 (05): : 14 - 18
  • [34] Defective Galton-Watson processes in a varying environment
    Kersting, Goetz
    Minuesa, Carmen
    BERNOULLI, 2022, 28 (02) : 1408 - 1431
  • [35] Galton-Watson games
    Holroyd, Alexander E.
    Martin, James B.
    RANDOM STRUCTURES & ALGORITHMS, 2021, 59 (04) : 495 - 521
  • [36] Galton-Watson Trees
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 11 - 17
  • [37] GALTON-WATSON PROCESSES AND THEIR ROLE AS BUILDING BLOCKS FOR BRANCHING PROCESSES
    BRUSS, F. T. H. O. M. A. S.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (01) : 141 - 153
  • [38] Galton-Watson forests
    Pavlov, YL
    Cheplyukova, IA
    PROBABILISTIC METHODS IN DISCRETE MATHEMATICS, 2002, : 93 - 97
  • [39] Transformations of Galton-Watson processes and linear fractional reproduction
    Klebaner, F. C.
    Roesler, U.
    Sagitov, S.
    ADVANCES IN APPLIED PROBABILITY, 2007, 39 (04) : 1036 - 1053
  • [40] Reinforced Galton-Watson processes I: Malthusian exponents
    Bertoin, Jean
    Mallein, Bastien
    RANDOM STRUCTURES & ALGORITHMS, 2024, 65 (02) : 387 - 410