On One Two-dimensional Binary Mixture's Motion in a Flat Layer

被引:0
|
作者
Darabi, Nemat [1 ]
Malah, Hamid [2 ]
机构
[1] Siberian Fed Univ, Inst Math & Comp Sci, Svobodny 79, Krasnoyarsk 660041, Russia
[2] Peter Great St Petersburg Polytech Univ, Inst Appl Math & Mech, Polytech Skaya 29, St Petersburg 195251, Russia
关键词
Reynolds number; thermal diffusion equations; binary mixture; non-stationary regime;
D O I
10.17516/1997-1397-2016-9-3-279-287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper is estimated a special solution for solving thermal diffusion equations, that describe motion of binary mixture in a flat layer. When Reynolds number (Re -> 0) is small, it is possible to simplify these equations to some easier problems. In solving process to find pressure it is necessary to solve an inverse problem. Answers for non-stationary regime are presented in trigonometric Fourier series.
引用
收藏
页码:279 / 287
页数:9
相关论文
共 50 条
  • [31] Maximum-likelihood estimators for one and two-dimensional speckle motion
    Duncan, DD
    Kirkpatrick, SJ
    LASER-TISSUE INTERACTION XIV, 2003, 4961 : 202 - 208
  • [32] One-stage analysis of the motion of two-dimensional plaid patterns
    Derrington, A.
    Badcock, D.
    PERCEPTION, 1990, 19 (04) : 386 - 386
  • [33] AN ATTEMPT AT BRINGING TO LIGHT A PHASE INVERSION IN A BINARY MIXTURE OF TWO-DIMENSIONAL ROUNDED PARTICLES
    LEFEBVRE, C
    BARTHELEMY, C
    GUYOTHERMANN, AM
    GUYOT, JC
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 1988, 14 (15-17) : 2443 - 2465
  • [34] Demixing of an active-passive binary mixture through a two-dimensional elastic meshwork
    Yadav, Ramanand Singh
    Chakrabarti, Rajarshi
    SOFT MATTER, 2025, 21 (12)
  • [35] Density segregation of a binary solids mixture during batch operation in a two-dimensional hopper
    Shinohara, K
    Golman, B
    ADVANCED POWDER TECHNOLOGY, 2003, 14 (03) : 333 - 347
  • [36] Two-dimensional motion of a rolling non-circular cylinder on a flat horizontal surface
    Aghamohammadi, Amir
    Khorrami, Mohammad
    CANADIAN JOURNAL OF PHYSICS, 2018, 96 (06) : 627 - 632
  • [37] Instructor's dilemma: requiring two-dimensional measurements to describe one-dimensional motion, applied to a person walking
    Diener, J. P. W.
    Kriek, J.
    EUROPEAN JOURNAL OF PHYSICS, 2021, 42 (02)
  • [38] Two-Dimensional Binary Honeycomb Layer Formed by Ag and Te on Ag(111)
    Shah, J.
    Sohail, H. M.
    Uhrberg, R. I. G.
    Wang, W.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (05): : 1609 - 1613
  • [39] The remainder in Weyl's law for random two-dimensional flat tori
    Petridis, Y
    Toth, JA
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (04) : 756 - 775
  • [40] Global two-dimensional stability measures of the flat plate boundary-layer flow
    Akervik, Espen
    Ehrenstein, Uwe
    Gallaire, Francois
    Henningson, Dan S.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2008, 27 (05) : 501 - 513