The non-negative matrix factorization toolbox for biological data mining

被引:133
|
作者
Li, Yifeng [1 ]
Ngom, Alioune [1 ]
机构
[1] Univ Windsor, Sch Comp Sci, Windsor, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Non-negative matrix factorization; Clustering; Bi-clustering; Feature extraction; Feature selection; Classification; Missing values;
D O I
10.1186/1751-0473-8-10
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Non-negative matrix factorization (NMF) has been introduced as an important method for mining biological data. Though there currently exists packages implemented in R and other programming languages, they either provide only a few optimization algorithms or focus on a specific application field. There does not exist a complete NMF package for the bioinformatics community, and in order to perform various data mining tasks on biological data. Results: We provide a convenient MATLAB toolbox containing both the implementations of various NMF techniques and a variety of NMF-based data mining approaches for analyzing biological data. Data mining approaches implemented within the toolbox include data clustering and bi-clustering, feature extraction and selection, sample classification, missing values imputation, data visualization, and statistical comparison. Conclusions: A series of analysis such as molecular pattern discovery, biological process identification, dimension reduction, disease prediction, visualization, and statistical comparison can be performed using this toolbox.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Gene Expression Data Classification Based on Non-negative Matrix Factorization
    Zheng, Chun-Hou
    Zhang, Ping
    Zhang, Lei
    Liu, Xin-Xin
    Han, Ju
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 194 - +
  • [42] General subspace constrained non-negative matrix factorization for data representation
    Liu, Yong
    Liao, Yiyi
    Tang, Liang
    Tang, Feng
    Liu, Weicong
    NEUROCOMPUTING, 2016, 173 : 224 - 232
  • [43] Considerations on Parallelizing Non-negative Matrix Factorization for Hyperspectral Data Unmixing
    Robila, Stefan A.
    Maciak, Lukasz G.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (01) : 57 - 61
  • [44] Rank selection for non-negative matrix factorization
    Cai, Yun
    Gu, Hong
    Kenney, Toby
    STATISTICS IN MEDICINE, 2023, 42 (30) : 5676 - 5693
  • [45] FARNESS PRESERVING NON-NEGATIVE MATRIX FACTORIZATION
    Babaee, Mohammadreza
    Bahmanyar, Reza
    Rigoll, Gerhard
    Datcu, Mihai
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3023 - 3027
  • [46] Multiobjective Sparse Non-Negative Matrix Factorization
    Gong, Maoguo
    Jiang, Xiangming
    Li, Hao
    Tan, Kay Chen
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (08) : 2941 - 2954
  • [47] Optimization and expansion of non-negative matrix factorization
    Xihui Lin
    Paul C. Boutros
    BMC Bioinformatics, 21
  • [48] Novel Algorithm for Non-Negative Matrix Factorization
    Tran Dang Hien
    Do Van Tuan
    Pham Van At
    Le Hung Son
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2015, 11 (02) : 121 - 133
  • [49] Discriminant Projective Non-Negative Matrix Factorization
    Guan, Naiyang
    Zhang, Xiang
    Luo, Zhigang
    Tao, Dacheng
    Yang, Xuejun
    PLOS ONE, 2013, 8 (12):
  • [50] Enforced Sparse Non-Negative Matrix Factorization
    Gavin, Brendan
    Gadepally, Vijay
    Kepner, Jeremy
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016, : 902 - 911