The non-negative matrix factorization toolbox for biological data mining

被引:133
|
作者
Li, Yifeng [1 ]
Ngom, Alioune [1 ]
机构
[1] Univ Windsor, Sch Comp Sci, Windsor, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Non-negative matrix factorization; Clustering; Bi-clustering; Feature extraction; Feature selection; Classification; Missing values;
D O I
10.1186/1751-0473-8-10
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Non-negative matrix factorization (NMF) has been introduced as an important method for mining biological data. Though there currently exists packages implemented in R and other programming languages, they either provide only a few optimization algorithms or focus on a specific application field. There does not exist a complete NMF package for the bioinformatics community, and in order to perform various data mining tasks on biological data. Results: We provide a convenient MATLAB toolbox containing both the implementations of various NMF techniques and a variety of NMF-based data mining approaches for analyzing biological data. Data mining approaches implemented within the toolbox include data clustering and bi-clustering, feature extraction and selection, sample classification, missing values imputation, data visualization, and statistical comparison. Conclusions: A series of analysis such as molecular pattern discovery, biological process identification, dimension reduction, disease prediction, visualization, and statistical comparison can be performed using this toolbox.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Non-negative Matrix Factorization for Binary Data
    Larsen, Jacob Sogaard
    Clemmensen, Line Katrine Harder
    2015 7TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (IC3K), 2015, : 555 - 563
  • [2] Mining Frequent Patterns using Non-negative Matrix Factorization
    Batcha, Nowshath K.
    Jabbar, Bazila Banu Abdul
    PROCEEDINGS OF THE 2017 IEEE SECOND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES (ICECCT), 2017,
  • [3] Non-negative matrix for mining typical user profiles factorization
    Lu, JJ
    Xu, BW
    Chu, WC
    Yang, HJ
    IKE'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE ENGINEERING, VOLS 1 AND 2, 2003, : 539 - 543
  • [4] Non-negative matrix Factorization for Toxicogenomic Literature Data
    Kang, Byeong-Chul
    Kim, Hyung-Yong
    Lee, Tae-ho
    Shin, Ga-Hee
    Youn, Seok-Joo
    MOLECULAR & CELLULAR TOXICOLOGY, 2009, 5 (03) : 89 - 89
  • [5] Automatic Factorization of Biological Signals by using Boltzmann Non-negative Matrix Factorization
    Watanabe, Kenji
    Hidaka, Akinori
    Kurita, Takio
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 1122 - 1128
  • [6] Algorithms for Non-Negative Matrix Factorization on Noisy Data With Negative Values
    Green, Dylan
    Bailey, Stephen
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 5187 - 5197
  • [7] Image semantic information mining algorithm by non-negative matrix factorization
    Li Yan
    Zhou Xingbo
    2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND ENGINEERING APPLICATIONS, 2013, : 345 - 348
  • [8] Dropout non-negative matrix factorization
    Zhicheng He
    Jie Liu
    Caihua Liu
    Yuan Wang
    Airu Yin
    Yalou Huang
    Knowledge and Information Systems, 2019, 60 : 781 - 806
  • [9] Non-negative matrix factorization on kernels
    Zhang, Daoqiang
    Zhou, Zhi-Hua
    Chen, Songcan
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 404 - 412
  • [10] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    COMPUTER JOURNAL, 2021, 64 (07): : 1080 - 1092