HIGHER LEFT DERIVATIONS ON SEMIPRIME RINGS

被引:0
|
作者
Park, Kyoo-Hong [1 ]
机构
[1] Seowon Univ, Dept Math Educ, Cheongju 361742, South Korea
来源
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS | 2010年 / 17卷 / 04期
关键词
higher left derivations; semiprime rings; center;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we extend the Bregar and Vukman's result [1, Proposition 1.6], which is well-known, to higher left derivations as follows: let R be a ring. (i) Under a certain condition, the existence of a nonzero higher left derivation implies that R is commutative. (ii) if R is semiprime, every higher left derivation on R is a higher derivation which maps R into its center.
引用
收藏
页码:355 / 362
页数:8
相关论文
共 50 条
  • [41] Semiprime Near-Rings with Derivations
    Jin, Xiaocan
    PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL I: COMPUTER SCIENCE AND ENGINEERING, 2008, : 107 - 110
  • [42] On certain subgroups of semiprime rings with derivations
    Wong, TL
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) : 1961 - 1968
  • [43] A note on generalized derivations of semiprime rings
    Vukman, Joso
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 367 - 370
  • [44] Generalized reverse derivations on semiprime rings
    A. Aboubakr
    S. González
    Siberian Mathematical Journal, 2015, 56 : 199 - 205
  • [45] IDENTITIES WITH GENERALIZED DERIVATIONS IN SEMIPRIME RINGS
    Dhara, Basudeb
    Ali, Shakir
    Pattanayak, Atanu
    DEMONSTRATIO MATHEMATICA, 2013, 46 (03) : 453 - 460
  • [46] ON GENERALIZED DERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Huang, Shuliang
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 771 - 776
  • [47] Generalized derivations in prime and semiprime rings
    Huang, Shuliang
    Rehman, Nadeem ur
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (02): : 29 - 34
  • [48] GENERALIZED JORDAN DERIVATIONS ON SEMIPRIME RINGS
    Ferreira, Bruno L. M.
    Ferreira, Ruth N.
    Guzzo, Henrique, Jr.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (01) : 36 - 43
  • [49] On semiprime rings with multiplicative (generalized)-derivations
    Khan S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (1): : 119 - 128
  • [50] Derivations on multilinear polynomials in semiprime rings
    De Filippis, V
    Di Vincenzo, OM
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (12) : 5975 - 5983